
INSTRUCTIONS
REFERENCE MANUAL

Cat. No. O011-E1-01

FQM1 Series
FQM1-CM001
FQM1-MMP21
FQM1-MMA21

Flexible Motion Controller

FQM1 Series
FQM1-CM001
FQM1-MMP21
FQM1-MMA21
Flexible Motion Controller
Instructions Reference Manual
Produced December 2004

No. 6182

OMRON Corporation

Please read and understand this manual before using the product. Please consult your OMRON
representative if you have any questions or comments.

Read and Understand this Manual

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a
period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE
PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS
DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS,
WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT
LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which
liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS
REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS
WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO
CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.
1

No. 6182
Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the
combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying
ratings and limitations of use that apply to the products. This information by itself is not sufficient for a
complete determination of the suitability of the products in combination with the end product, machine,
system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not
intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses
listed may be suitable for the products:

• Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or
uses not described in this manual.

• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical
equipment, amusement machines, vehicles, safety equipment, and installations subject to separate
industry or government regulations.

• Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED
FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any
consequence thereof.
2

No. 6182
Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other
reasons.

It is our practice to change model numbers when published ratings or features are changed, or when
significant construction changes are made. However, some specifications of the products may be changed
without any notice. When in doubt, special model numbers may be assigned to fix or establish key
specifications for your application on your request. Please consult with your OMRON representative at any
time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when
tolerances are shown.

PERFORMANCE DATA

Performance data given in this manual is provided as a guide for the user in determining suitability and does
not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must
correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and
Limitations of Liability.

ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.
3

iv

Notice:
OMRON products are manufactured for use according to proper procedures
by a qualified operator and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this
manual. Always heed the information provided with them. Failure to heed pre-
cautions can result in injury to people or damage to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also
capitalized when it refers to an OMRON product, regardless of whether or not
it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON
products, often means “word” and is abbreviated “Wd” in documentation in
this sense.

The abbreviation “CM” means Coordinator Module and the abbreviation “MM”
means Motion Control Module.

Visual Aids
The following headings appear in the left column of the manual to help you
locate different types of information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 2004
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.
v

vi

TABLE OF CONTENTS

PRECAUTIONS . xi

1 Intended Audience . xii

2 General Precautions . xii

3 Safety Precautions. xii

4 Conformance to EC Directives . xvii

5 Data Backup . xx

SECTION 1
Introduction . 1

1-1 General Instruction Characteristics . 2

1-2 Instruction Execution Checks . 8

SECTION 2
Summary of Instructions . 11

2-1 Instruction Classifications by Function. 12

2-2 Instruction Functions. 17

2-3 Alphabetical List of Instructions by Mnemonic . 58

2-4 List of Instructions by Function Code. 66

SECTION 3
Instructions . 73

3-1 Notation and Layout of Instruction Descriptions . 77

3-2 Sequence Input Instructions . 80

3-3 Sequence Output Instructions . 96

3-4 Sequence Control Instructions . 106

3-5 Timer and Counter Instructions. 114

3-6 Comparison Instructions . 129

3-7 Data Movement Instructions . 159

3-8 Data Shift Instructions . 178

3-9 Increment/Decrement Instructions . 207

3-10 Symbol Math Instructions . 222

3-11 Conversion Instructions. 271

3-12 Logic Instructions . 290

3-13 Special Math Instructions . 306

3-14 Floating-point Math Instructions . 317

3-15 Table Data Processing Instructions . 356

3-16 Data Control Instructions . 363

3-17 Subroutines . 378

3-18 Interrupt Control Instructions . 394

3-19 High-speed Counter/Pulse Output Instructions. 405

3-20 Step Instructions . 444

3-21 I/O Refresh Instruction . 462
vii

TABLE OF CONTENTS

3-22 Serial Communications Instructions . 463

3-23 Debugging Instructions . 477

3-24 Failure Diagnosis Instructions . 481

3-25 Other Instructions . 486

3-26 Block Programming Instructions. 488

SECTION 4
Instruction Execution Times and Number of Steps. 499

4-1 FQM1 Instruction Execution Times and Number of Steps . 500

Index. 515

Revision History . 521
viii

 About this Manual:
This manual describes the ladder diagram programming instructions of the Coordinator Module and
Motion Control Modules of the FQM1-series Flexible Motion Controllers.

Please read this manual and all related manuals listed in the table on the next page and be sure you
understand information provided before attempting to program or use FQM1-series Flexible Motion
Controllers in a control system.

Section 1 provides information on general instruction characteristics as well as the errors that can
occur during instruction execution.

Section 2 provides summaries of instructions used with the FQM1.

Section 3 describes each of the instructions that can be used in programming the FQM1.

Section 4 provides instruction execution times and the number of steps for each FQM1 instruction.

Name Cat. No. Contents
FQM1 Series
FQM1-CM001, FQM1-MMP21, FQM1-MMA21
Flexible Motion Controllers Operation Manual

O010 This manual provides an overview of and describes
the following information for the FQM1-series Flexible
Motion Controllers: features, system configuration,
system design, installation, wiring, maintenance, I/O
memory allocation, troubleshooting, etc.

FQM1 Series
FQM1-CM001, FQM1-MMP21, FQM1-MMA21
Flexible Motion Controllers
Instructions Reference Manual (this manual)

O011 Describes the ladder diagram programming instruc-
tions supported by FQM1-series Flexible Motion Con-
trollers. Use this manual together with the Operation
Manual (Cat. No. O010).

SYSMAC WS02-CXP@@-E
CX-Programmer Operation Manual Version 5.@

W437 Provides information on how to use the CX-Program-
mer, a Windows-based programming and monitoring
package for OMRON PLCs.
ix

x

PRECAUTIONS

This section provides general precautions for using the FQM1-series Flexible Motion Controllers and related devices.

The information contained in this section is important for the safe and reliable application of the FQM1-series
Flexible Motion Controller. You must read this section and understand the information contained before attempting
to set up or operate a control system using the FQM1-series Flexible Motion Controller.

1 Intended Audience . xii

2 General Precautions . xii

3 Safety Precautions. xii

3-1 Operating Environment Precautions . xiii

3-2 Application Precautions . xiv

4 Conformance to EC Directives . xvii

4-1 Applicable Directives . xvii

4-2 Concepts . xvii

4-3 Conformance to EC Directives . xvii

4-4 EMC Directive Conformance Conditions. xvii

4-5 Relay Output Noise Reduction Methods . xviii

5 Data Backup . xx
xi

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, petrochemical plants, and other systems,
machines, and equipment that may have a serious influence on lives and
property if used improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

!WARNING It is extremely important that the FQM1 be used for the specified purpose and
under the specified conditions, especially in applications that can directly or
indirectly affect human life. You must consult with your OMRON representa-
tive before applying an FQM1 System to the above-mentioned applications.

3 Safety Precautions

!WARNING Do not attempt to take any Modules apart while the power is being supplied.
Doing so may result in electric shock.

!WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

!WARNING Do not attempt to disassemble, repair, or modify any Modules. Any attempt to
do so may result in malfunction, fire, or electric shock.

!WARNING Provide safety measures in external circuits, i.e., not in the Flexible Motion
Controller (referred to as the “FQM1”), to ensure safety in the system if an
abnormality occurs due to malfunction of the FQM1 or another external factor
affecting the FQM1 operation. Not doing so may result in serious accidents.

• Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

• The FQM1 will turn OFF all outputs when its self-diagnosis function
detects any error or when a severe failure alarm (FALS) instruction is exe-
cuted. As a countermeasure for such errors, external safety measures
must be provided to ensure safety in the system.

• The FQM1 outputs may remain ON or OFF due to destruction of the out-
put transistors. As a countermeasure for such problems, external safety
measures must be provided to ensure safety in the system.
xii

Safety Precautions 3
• When the 24-VDC output (service power supply to the FQM1) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.

!WARNING Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes. Not doing so may result in
serious accidents.

!Caution Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

!Caution User programs and parameters written to the Coordinator Module or Motion
Control Module will be automatically backed up in the FQM1 flash memory
(flash memory function). The contents of I/O memory (including the DM Area),
however, are not written to flash memory. Part of the DM Area used as a hold-
ing area when recovering from a power interruption is backed up using a
super capacitor, but correct values will not be maintained if an error occurs
that prevents memory backup. As a countermeasure for such problems, take
appropriate measures in the program using the Memory Not Held Flag
(A40414) when externally outputting the contents of the DM Area.

!Caution Confirm safety at the destination Module before transferring a program to
another Module or editing the I/O area. Doing either of these without confirm-
ing safety may result in injury.

!Caution Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in the operation manual. The loose screws may result in
burning or malfunction.

!Caution Do not touch the Power Supply Unit while the power is ON, and immediately
after turning OFF the power. Touching hot surfaces may result in burning.

!Caution Pay careful attention to the polarities (+/-) when wiring the DC power supply. A
wrong connection may cause malfunction of the system.

3-1 Operating Environment Precautions

!Caution Do not operate the control system in the following places:

• Locations subject to direct sunlight

• Locations subject to temperatures or humidity outside the range specified
in the specifications

• Locations subject to condensation as the result of severe changes in tem-
perature

• Locations subject to corrosive or flammable gases

• Locations subject to dust (especially iron dust) or salts

• Locations subject to exposure to water, oil, or chemicals

• Locations subject to shock or vibration

!Caution Take appropriate and sufficient countermeasures when installing systems in
the following locations:
xiii

Safety Precautions 3
• Locations subject to static electricity or other forms of noise

• Locations subject to strong electromagnetic fields

• Locations subject to possible exposure to radioactivity

• Locations close to power supplies

!Caution The operating environment of the FQM1 System can have a large effect on
the longevity and reliability of the system. Improper operating environments
can lead to malfunction, failure, and other unforeseeable problems with the
FQM1 System. Make sure that the operating environment is within the speci-
fied conditions at installation and remains within the specified conditions dur-
ing the life of the system.

3-2 Application Precautions

!WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always connect to a ground of 100 Ω or less when installing the FQM1.
Not doing so may result in electric shock.

• Always connect to a ground of 100 Ω or less when short-circuiting the
functional ground and line ground terminals of the Power Supply Unit, in
particular.

• Always turn OFF the power supply to the FQM1 before attempting any of
the following. Not turning OFF the power supply may result in malfunction
or electric shock.

• Mounting or dismounting Power Supply Unit, Coordinator Module, Mo-
tion Control Module, and End Module

• Assembling the Modules

• Setting DIP switches

• Connecting or wiring the cables

• Connecting or disconnecting the connectors

!Caution Failure to abide by the following precautions could lead to faulty operation of
the FQM1 or the system, or could damage the FQM1. Always heed these pre-
cautions.

• Always use the CX-Programmer (Programming Device for Windows) to
create new cyclic tasks and interrupt tasks.

• The user program and parameter area data in Coordinator Module and
Motion Control Modules is backed up in the built-in flash memory. Do not
turn OFF the power supply to the FQM1 while the user program or param-
eter area data is being transferred. The data will not be backed up if the
power is turned OFF.

• The FQM1 will start operating in RUN mode when the power is turned ON
with the default settings (i.e., if the operating mode at power ON (startup
mode) setting in the System Setup is disabled).

• Configure the external circuits so that the control power supply turns ON
after the power supply to the FQM1 turns ON. If the power is turned ON in
the opposite order, the built-in outputs and other outputs may momentarily
malfunction and the control outputs may temporarily not operate correctly.

• Outputs may remain ON due to a malfunction in the built-in transistor out-
puts or other internal circuits. As a countermeasure for such problems,
xiv

Safety Precautions 3
external safety measures must be provided to ensure the safety of the
system.

• Part of the DM Area (data memory) in the Motion Control Module is held
using the super capacitor. Corrupted memory may prevent the correct val-
ues from being saved, however. Take appropriate measures in the ladder
program whenever the Memory Not Held Flag (A40414) turns ON, such
as resetting the data in the DM Area.

• Part of the DM Area in the Coordinator Module is backed up in the built-in
flash memory when transferring data from the CX-Programmer. Do not
turn OFF the power to the FQM1 while data is being transferred. The data
will not be backed up if the power is turned OFF.

• Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the FQM1

• Force-setting/force-resetting any bit in memory

• Changing the present value of any word or any set value in memory

• Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

• Be sure that all the terminal screws and cable connector screws are tight-
ened to the torque specified in the relevant manuals. Incorrect tightening
torque may result in malfunction.

• Mount the Modules only after checking the connectors and terminal
blocks completely.

• Before touching the Module, be sure to first touch a grounded metallic
object in order to discharge any static built-up. Not doing so may result in
malfunction or damage.

• Be sure that the terminal blocks, connectors, and other items with locking
devices are properly locked into place. Improper locking may result in
malfunction.

• Wire correctly according to the specified procedures.

• Always use the power supply voltage specified in the operation manuals.
An incorrect voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

• Leave the dust protective label attached to the Module when wiring.
Removing the label may result in malfunction.

• Remove the dust protective label after the completion of wiring to ensure
proper heat dissipation. Leaving the label attached may result in malfunc-
tion.

• Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals. Connection of bare stranded wires may result in
burning.

• Do not apply voltages to the built-in inputs in excess of the rated input
voltage. Excess voltages may result in burning.

• Do not apply voltages or connect loads to the built-in outputs in excess of
the maximum switching capacity. Excess voltage or loads may result in
burning.
xv

Safety Precautions 3
• Disconnect the functional ground terminal when performing withstand
voltage tests. Not disconnecting the functional ground terminal may result
in burning.

• Wire correctly and double-check all the wiring or the setting switches
before turning ON the power supply. Incorrect wiring may result in burn-
ing.

• Check that the DIP switches and data memory (DM) are properly set
before starting operation.

• Check the user program for proper execution before actually running it on
the Module. Not checking the program may result in an unexpected oper-
ation.

• Resume operation only after transferring to the new Module the contents
of the DM Areas, programs, parameters, and data required for resuming
operation. Not doing so may result in an unexpected operation.

• Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

• Do not place objects on top of the cables. Doing so may break the cables.

• Use the dedicated connecting cables specified in operation manuals to
connect the Modules. Using commercially available RS-232C computer
cables may cause failures in external devices or the Coordinator Module.

• Do not connect pin 6 (+5V) on the RS-232C port on the Coordinator Mod-
ule to any external device other than the NT-AL001 or CJ1W-CIF11 Con-
version Adapter. Doing so may result in damage to the external device
and the Coordinator Module.

• When replacing parts, be sure to confirm that the rating of a new part is
correct. Not doing so may result in malfunction or burning.

• When transporting or storing the product, cover the PCBs with electrically
conductive materials to prevent LSIs and ICs from being damaged by
static electricity, and also keep the product within the specified storage
temperature range.

• Do not touch the mounted parts or the rear surface of PCBs because
PCBs have sharp edges such as electrical leads.

• When connecting the Power Supply Unit, Coordinator Module, Motion
Control Module, and End Module, slide the upper and lower sliders until a
click sound is heard to lock them securely. Desired functionality may not
be achieved unless Modules are securely locked in place.

• Be sure to mount the End Module supplied with the Coordinator Module
to the rightmost Module. Unless the End Module is properly mounted, the
FQM1 will not function properly.

• Make sure that parameters are set correctly. Incorrect parameter settings
may result in unexpected operations. Make sure that equipment will not
be adversely affected by the parameter settings before starting or stop-
ping the FQM1.
xvi

Conformance to EC Directives 4
4 Conformance to EC Directives

4-1 Applicable Directives
• EMC Directives

• Low Voltage Directive

4-2 Concepts
EMC Directives
OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or the
overall machine. The actual products have been checked for conformity to
EMC standards (see the following note). Whether the products conform to the
standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel on which the OMRON devices are installed.
The customer must, therefore, perform the final check to confirm that devices
and the overall machine conform to EMC standards.

Note Applicable EMC (Electromagnetic Compatibility) standards are as follows:

EMS (Electromagnetic Susceptibility): EN61000-6-2
EMI (Electromagnetic Interference): EN61000-6-4

(Radiated emission: 10-m regulations)

Low Voltage Directive
Always ensure that devices operating at voltages of 50 to 1,000 V AC and 75
to 1,500 V DC meet the required safety standards for the Motion Controller
(EN61131-2).

4-3 Conformance to EC Directives
The FQM1-series Flexible Motion Controllers comply with EC Directives. To
ensure that the machine or device in which the Motion Controller is used com-
plies with EC Directives, the Motion Controller must be installed as follows:

1,2,3... 1. The Motion Controller must be installed within a control panel.

2. You must use reinforced insulation or double insulation for the DC power
supplies used for the communications power supply and I/O power sup-
plies.

3. Motion Controllers complying with EC Directives also conform to the Com-
mon Emission Standard (EN61000-6-4). Radiated emission characteris-
tics (10-m regulations) may vary depending on the configuration of the
control panel used, other devices connected to the control panel, wiring,
and other conditions. You must therefore confirm that the overall machine
or equipment complies with EC Directives.

4-4 EMC Directive Conformance Conditions
The immunity testing condition of the Motion Controller Modules is as follows:

Overall accuracy of FQM1-MMA21 analog I/O: +4%/−2%
xvii

Conformance to EC Directives 4
4-5 Relay Output Noise Reduction Methods
The FQM1-series Flexible Motion Controller conforms to the Common Emis-
sion Standards (EN61000-6-4) of the EMC Directives. However, noise gener-
ated by relay output switching may not satisfy these Standards. In such a
case, a noise filter must be connected to the load side or other appropriate
countermeasures must be provided external to the Motion Controller.

Countermeasures taken to satisfy the standards vary depending on the
devices on the load side, wiring, configuration of machines, etc. Following are
examples of countermeasures for reducing the generated noise.

Countermeasures
(Refer to EN61000-6-4 for more details.)

Countermeasures are not required if the frequency of load switching for the
whole system with the Motion Controller included is less than 5 times per
minute.

Countermeasures are required if the frequency of load switching for the whole
system with the Motion Controller included is more than 5 times per minute.

Countermeasure Examples
When switching an inductive load, connect a surge protector, diodes, etc., in
parallel with the load or contact as shown below.

Circuit Current Characteristic Required element

AC DC

Yes Yes If the load is a relay or solenoid, there
is a time lag between the moment the
circuit is opened and the moment the
load is reset.
If the supply voltage is 24 or 48 V,
insert the surge protector in parallel
with the load. If the supply voltage is
100 to 200 V, insert the surge protector
between the contacts.

The capacitance of the capacitor must
be 1 to 0.5 µF per contact current of
1 A and resistance of the resistor must
be 0.5 to 1 Ω per contact voltage of 1 V.
These values, however, vary with the
load and the characteristics of the
relay. Decide these values from experi-
ments, and take into consideration that
the capacitance suppresses spark dis-
charge when the contacts are sepa-
rated and the resistance limits the
current that flows into the load when
the circuit is closed again.
The dielectric strength of the capacitor
must be 200 to 300 V. If the circuit is an
AC circuit, use a capacitor with no
polarity.

C

R

CR method

Power
supply

In
du

ct
iv

e
lo

ad
xviii

Conformance to EC Directives 4
When switching a load with a high inrush current such as an incandescent
lamp, suppress the inrush current as shown below.

The following Unit and Cables can be used with the FQM1-series Flexible
Motion Controller.

No Yes The diode connected in parallel with
the load changes energy accumulated
by the coil into a current, which then
flows into the coil so that the current
will be converted into Joule heat by the
resistance of the inductive load.

This time lag, between the moment the
circuit is opened and the moment the
load is reset, caused by this method is
longer than that caused by the CR
method.

The reversed dielectric strength value
of the diode must be at least 10 times
as large as the circuit voltage value.
The forward current of the diode must
be the same as or larger than the load
current.

The reversed dielectric strength value
of the diode may be two to three times
larger than the supply voltage if the
surge protector is applied to electronic
circuits with low circuit voltages.

Yes Yes The varistor method prevents the impo-
sition of high voltage between the con-
tacts by using the constant voltage
characteristic of the varistor. There is
time lag between the moment the cir-
cuit is opened and the moment the load
is reset.

If the supply voltage is 24 or 48 V,
insert the varistor in parallel with the
load. If the supply voltage is 100 to
200 V, insert the varistor between the
contacts.

Circuit Current Characteristic Required element

AC DC

Diode method

Power
supply

In
du

ct
iv

e
lo

ad

Varistor method

Power
supply

In
du

ct
iv

e
lo

ad

Name Model Cable length

Relay Unit XW2B-80J7-1A ---

Controller Connect-
ing Cables

XW2Z-050J-A28 0.5 m

XW2Z-100J-A28 1 m

XW2Z-050J-A30 0.5 m

XW2Z-100J-A30 1 m

XW2Z-050J-A31 0.5 m

XW2Z-100J-A31 1 m

OUT

COM

R
OUT

COM

R

Providing a dark current of approx.
one-third of the rated value
through an incandescent lamp

Providing a limiting resistor

Countermeasure 2Countermeasure 1
xix

Data Backup 5
5 Data Backup
The user programs, I/O memories, and other data in the Coordinator Module
and Motion Control Modules is backed up either by a super capacitor or flash
memory, as listed in the following table.

The data backup time of the super capacitor is given in the following table and
shown in the following graph.

Note 1. The times give above assume that the capacitor is completely charged.
Power must be supply to the FQM1 for at least 20 minutes to completely
charge the capacitor.

2. The backup time of the super capacitor is reduced as the capacitor ages.
It is also affected by the ambient temperature. Use portion of the DM Area

Module Data Data backup

Coordinator Module Error log RAM with super
capacitorMotion Control Module DM Area words D30000 to D32767

Error log

Coordinator Module User program
System Setup
DM Area words D30000 to D32767

Flash memory

Motion Control Module User program
System Setup

Temperature Initial After 5 years After 10 years

Ta = 25°C 101.61 hours
(4.23 days)

96.2 hours
(4.01days)

90.8 hours
(3.78 days)

Ta = 40°C 26.39 hours
(1.09 days)

15.28 hours 4.16 hours

25 35 45 55 65 75

0

24

48

72

96

120

Ambient temperature (°C)

Super Capacitor Backup Times

B
ac

ku
p

tim
e

(h
)

25°C: 96.20 h
25°C: 101.61 h

40°C: 26.39 h

Initial value,

40°C: 4.16 h

25°C: 90.80 h

40°C: 15.28 h

After 5 years, After 10 years
xx

Data Backup 5
backed up by the super capacitor only for data that is to be held during mo-
mentary power interruptions. For operating parameters and other long-
term data, use the portion of DM Area stored in flash memory in the Coor-
dinator Module and transfer it to the Motion Control Modules before start-
ing operation.

The data in the DM Area and error log will become unstable or corrupted if the
power to the system is OFF for longer than the backup time.

If the power supply is to be turned OFF for an extended period of time, use
D30000 to D32767 in the Coordinator Module, which is backed up in flash
memory, to store data.

Otherwise, the Memory Not Held Flag (A404.14) can be used as the input
condition for programming using data in areas stored for power interruptions
to perform suitable processing.

A404.14: Turns ON when power is turned ON if data stored for power interrup-
tions in the DM Area or error log is corrupted.

DM Area words D30000 to D32767 in the Coordinator Module are backed up
in flash memory as described in the next section.

Backing Up DM Area Data in Flash Memory
DM Area words D30000 to D32767 in the Coordinator Module is read from
flash memory when the power supply is turned ON. We recommend using DM
Area words D30000 to D32767 in the Coordinator Module to store operating
parameters and other data required for system operation and then using the
DM transfer function to transfer the data from the Coordinator Module to the
Motion Control Modules at the start of operation.

A404.14

Processing for
corruption of data
backed up for
power interruptions
xxi

Data Backup 5
xxii

SECTION 1
Introduction

This section provides information on general instruction characteristics as well as the errors that can occur during
instruction execution.

1-1 General Instruction Characteristics . 2

1-1-1 Program Capacity . 2

1-1-2 Differentiated Instructions . 2

1-1-3 Instruction Variations . 3

1-1-4 Instruction Location and Execution Conditions 3

1-1-5 Inputting Data in Operands. 4

1-1-6 Data Formats. 7

1-2 Instruction Execution Checks . 8

1-2-1 Errors Occurring at Instruction Execution . 8

1-2-2 Fatal Errors (Program Errors) . 9
1

General Instruction Characteristics Section 1-1
1-1 General Instruction Characteristics

1-1-1 Program Capacity
The program capacity tells the size of the user program area each Module
and is expressed as the number of program steps. The number of steps
required in the user program area for each instruction varies from 1 to 7 steps,
depending upon the instruction and the operands used with it.

Note The number of steps in a program is not the same as the number of instruc-
tions, i.e., each instruction contains from 1 to 7 steps. For example, LD and
OUT require 1 step each, but MOV(021) requires 3 steps. The number of
steps required by an instruction is also increased by one step for each double-
length operand used in it. For example, MOVL(498) normally requires 3 steps,
but 4 steps will be required if a constant is specified for the source word oper-
and, S. Refer to SECTION 4 Instruction Execution Times and Number of
Steps for the number of steps required for each instruction.

1-1-2 Differentiated Instructions
Most instructions in the FQM1 are provided with both non-differentiated and
upwardly differentiated variations, and some are also provided with a down-
wardly differentiated variation.

• A non-differentiated instruction is executed every time it is scanned.

• An upwardly differentiated instruction is executed only once after its exe-
cution condition goes from OFF to ON.

• A downwardly differentiated instruction is executed only once after its exe-
cution condition goes from ON to OFF.

Model Model Program capacity

Coordinator Module FQM1-CM001 5K steps

Motion Control Modules Pulse I/O FQM1-MMP21

Analog I/O FQM1-MMA21

Variation Instruction type Operation Format Example

Non-
differentiated

Output instructions
(instructions requiring
an execution condi-
tion)

The instruction is exe-
cuted every cycle while
the execution condition is
true (ON).

Input instructions
(instructions used as
execution conditions)

The bit processing (such
as read, comparison, or
test) is performed every
cycle. The execution con-
dition is true while the
result is ON.

Upwardly
differentiated
(with @ prefix)

Output instructions The instruction is exe-
cuted just once when the
execution condition goes
from OFF to ON.

Input instructions
(instructions used as
execution conditions)

The bit processing (such
as read, comparison, or
test) is performed every
cycle. The execution con-
dition is true for one cycle
when the result goes
from OFF to ON.

Output instruction
executed each cycle MOV

Input instruction
executed each cycle

@Instruction executed
once for upward
differentiation

@MOV

MOV(021) executed once
for each OFF to ON transi-
tion in CIO 0001.02.

0001.02

Upwardly differentiated
input instruction

ON execution condition created
for one cycle only for each OFF
to ON transition in CIO 0001.03.

0001.03
2

General Instruction Characteristics Section 1-1
Note The downwardly differentiated option (%) is available only for the LD, AND,
OR, and RSET instructions. To create downwardly differentiated variations of
other instructions, control the execution of the instruction with work bits con-
trolled with DIFD(014).

1-1-3 Instruction Variations
The variation prefixes (@ and %) can be added to certain instructions to cre-
ate a differentiated instruction.

1-1-4 Instruction Location and Execution Conditions
The following table shows the locations in which instructions can be pro-
grammed. The table also shows when an instruction requires an execution
condition and when it does not. Refer to SECTION 2 Summary of Instructions
for details on specific instructions.

In addition to these instructions, the FQM1 is equipped with block program-
ming instructions. Refer to the description of the block programming instruc-
tions for details.

Downwardly
differentiated
(with % prefix)

Output instructions The instruction is exe-
cuted just once when the
execution condition goes
from ON to OFF.

Input instructions
(instructions used as
execution conditions)

The bit processing (such
as read, comparison, or
test) is performed every
cycle. The execution con-
dition is true for one cycle
when the result goes
from ON to OFF.

Variation Instruction type Operation Format Example

%Instruction
executed once for
downward
differentiation

%SET

0001.02

SET executed once for
each ON to OFF transition
in CIO 0001.02.

Downwardly differentiated
input instruction 0001.03

ON execution condition created
for one cycle only for each ON to
OFF transition in CIO 0001.03.

Variation Prefix Operation

Differentiation Upwardly dif-
ferentiated

@ Creates an upwardly differentiated instruc-
tion.

Downwardly
differentiated

% Creates a downwardly differentiated instruc-
tion.

 @ MOV

Instruction mnemonic
Up-differentiation variation

Instruction type Location Execution
condition

Format Examples

Input Instructions that
start logic
conditions (load
instructions)

At the left bus or at the
start of an instruction
block

Not
required

LD and input comparison
instructions such as LD >

Connecting
instructions

Between a starting
instruction and output
instruction

Required AND, OR, and input comparison
instructions, such as AND >

Output At the right bus Required The majority of instructions
(such as OUT and MOV)

Not
required

Instructions such as END, JME,
and ILC
3

General Instruction Characteristics Section 1-1
Note If an execution condition does not precede an instruction that requires one, a
program error will occur when the program is checked from the CX-Program-
mer.

1-1-5 Inputting Data in Operands
Operands are parameters that are set in advance with the I/O memory
addresses or constants to be used when the instruction is executed. There
are basically three kinds of operands: Source operands, destination oper-
ands, and numbers.

Note An instruction’s operands may also be referred to by their position in the
instruction (first operand, second operand, ...). The codes used for the oper-
and vary with the specific function of the operand.

Specifying Bit Addresses

Specifying Word Addresses

Operand Usual
code

Contents

Source Address containing
the data or the data
itself

S Source
operand

Source data other than
control data

C Control
data

Control data with a bit
or bits controlling
instruction execution

Destination Address where the
data will be stored

D ---

Number Contains a number,
such as a jump num-
ber or subroutine
number.

N ---

JMP

&3#0000

D00000

MOV

S (Source)

D (Destination)

N (Number)

#0000

D00000

MOV

First operand

Second operand

Description Example Instruction example

Description Example Instruction example
MOV 0003 D00200

@@@@ . @@

Note The word address + bit number format is
not used for Timer/Counter Completion
Flags or Task Flags.

Bit number

Word address

To specify a bit address, specify the word
address and bit address directly.

0001.02

Bit 02

Word CIO 0001

02
0001

@@@@

To specify a word address, specify the word
address directly.

Word address

0003

D00200

Word D00200

Word CIO 0003
4

General Instruction Characteristics Section 1-1
Specifying Indirect DM Addresses in Binary Mode

Specifying Indirect DM Addresses in BCD Mode

Description Example Instruction example

--- ---

When the contents of @D@@@@@ is between
0000 and 7FFF (00000 to 32,767), the corre-
sponding word between D00000 and D32767 is
specified.

MOV #0001 @D00300

Method Description Example Instruction example
Indirect DM
addressing
(BCD mode)

MOV #0001 *D00200

@D@@@@@

D

Content 00000 to 32767
(0000 to 7FFF)

When the @ prefix is input before a DM
address, the contents of that word specifies
another word that is used as the operand.
The contents can be 0000 to 7FFF (0 to
32,767), corresponding to the desired word
address in the DM Area.

Add the @ prefix.

Specifies D00256.

Decimal:

@D00300

0 1 0 0

 256

*D@@@@@

D

(BCD)Content 0000 to 9999

When the * prefix is input before a
DM address, the BCD contents of that
word specify another word that is
used as the operand. The contents
can be 0000 to 9999, corresponding
to the desired word address in the
DM Area.

*D00200

0 1 0 0

Specifies D00100.

Add the * prefix.
5

General Instruction Characteristics Section 1-1
Specifying Constants

Specifying Text Strings

Method Applicable operands Data format Code Range

Constant, 16-bit data All binary data and binary data within a range Unsigned binary # #0000 to #FFFF

Signed decimal ± –32,768 to +32,767

Unsigned decimal & &0 to &65,535

All BCD data and BCD data within a range BCD # #0000 to #9999

Constant, 32-bit data All binary data and binary data within a range Unsigned binary # #0000 0000 to
#FFFF FFFF

Signed decimal +
–

–2,147,483,648 to
+2,147,483,647

Unsigned decimal & &0 to &4,294,967,295

All BCD data and BCD data within a range BCD # #0000 0000 to
#9999 9999

Method Description Code Examples

Text strings Text is stored in ASCII (1 byte/character excluding special characters) in
the order from the higher to lower byte and lowest to highest word.
If there is an odd number of characters, 00 (NULL) is stored in the higher
byte of the last word in the range.

If there is an even number of characters, 0000 (two NULLs) are stored in
the word after the last in the range.

 "ABCDE"

 "A" "B"
 "C" "D"
 "E" NUL

41 42
43 44
45 00

 "ABCD"
 "A" "B"
 "C" "D"
NUL NUL

41 42
43 44
00 00
6

General Instruction Characteristics Section 1-1
The following diagram shows the characters that can be expressed in ASCII.

1-1-6 Data Formats
The following table shows the data formats that can be used in the FQM1.

SP

R
ig

ht
m

os
t b

it

Leftmost bit

Name Format Decimal
range

Hexadecimal
range

Unsigned
binary
data

0 to
65,535

0000 to FFFF

Signed
binary
data

–32,768
to
+32,767

8000 to 7FFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

23 22 21 2023 22 21 2023 22 21 2023 22 21 20

32768 512 256 128 64 32 16 8 4 2 116384 8192 4096 2048 1024Decimal

Binary

Hexa-
decimal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

23 22 21 2023 22 21 2023 22 21 2023 22 21 20

-32768 512 256 128 64 32 16 8 4 2 116384 81924096 2048 1024Decimal

1: Negative
0: Positive
Sign bit

Binary

Hexa-
decimal
7

Instruction Execution Checks Section 1-2
Signed Binary Numbers Negative signed-binary numbers are expressed as the 2’s complement of the
absolute hexadecimal value. For a decimal value of –12,345, the absolute
value is equivalent to 3039 hexadecimal. The 2’s complement is 10000 – 3039
(both hexadecimal) or CFC7.

To convert from a negative signed binary number (CFC7) to decimal, take the
2’s complement of that number (10000 – CFC7 = 3039), convert to decimal
(3039 hexadecimal = 12,345 decimal), and add a minus sign (–12,345).

1-2 Instruction Execution Checks

1-2-1 Errors Occurring at Instruction Execution
An instruction’s operands and placement are checked when an instruction is
input from the CX-Programmer or a program check is performed from the CX-
Programmer, but these are not final checks. The following errors can occur
when an instruction is executed.

BCD data 0 to 9,999 0000 to 9999

Floating-
point deci-
mal

--- ---

Name Format Decimal
range

Hexadecimal
range

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BCD 23 22 21 2023 22 21 2023 22 21 2023 22 21 20

0 to 9 0 to 9 0 to 9 0 to 9Decimal

31 30 29 23 22 21 20 19 18 17 3 2 1 0

Exponent Mantissa

Note This format conforms to IEEE754 standards for single-precision floating-point data
and is used only with instructions that convert or calculate floating-point data. It can
be used to set or monitor from the I/O memory Edit and Monitor Screen on the CX-
Programmer. As such, users do not need to know this format although they do need
to know that the formatting takes up two words.

The exponent includes 8 bits from bit 23 to bit 30
and indicates n plus 127 in 2n in binary.

The mantissa includes 23 bits from bit 00 to bit 22
and indicates this portion below the decimal point
in 1.@@@..... in binary.

1: negative or 0: positive

Sign of
mantissa Binary

Value = (−1)Sign x 1.[Mantissa] x 2Exponent

Mantissa

Sign (bit 31)

Exponent

Error Flag Fatal/Non-fatal

Instruction Processing Error ER Flag ON Non-fatal

Illegal Instruction Error Illegal Instruction Error Flag
(A405.14)

Fatal (program error)

UM (User Program Memory)
Overflow Error

UM Overflow Error Flag
(A405.15)

Fatal (program error)
8

Instruction Execution Checks Section 1-2
1-2-2 Fatal Errors (Program Errors)
Program execution will be stopped when one of the following program errors
occurs. All errors for which the Error Flag or Access Error Flag turns ON is
treated as a program error. The following table lists program errors. The Sys-
tem Setup can be set to stop program execution when one of these errors
occurs.

Error type Description Related flags

No END Instruction There is no END(001) instruction in the program. No END Error Flag
(A405.11)

Task Error An interrupt was generated but the corresponding interrupt
task does not exist.

Task Error Flag (A405.12)

Instruction Processing
Error

The CPU attempted to execute an instruction, but the data
provided in the instruction’s operand was incorrect.

Error (ER) Flag,
Instruction Processing
Error Flag (A405.08)

Differentiation Overflow
Error

Differentiated instructions were repeatedly inserted and
deleted during online editing (over 131,072 times).

Differentiation Overflow
Error Flag (A405.13)

UM Overflow Error The last address in UM (user program memory) has been
exceeded.

UM Overflow Error Flag
(A405.15)

Illegal Instruction Error The program contains an instruction that cannot be executed. Illegal Instruction Error
Flag (A405.14)
9

Instruction Execution Checks Section 1-2
10

SECTION 2
Summary of Instructions

This section provides a summary of instructions used with the FQM1.

2-1 Instruction Classifications by Function. 12

2-2 Instruction Functions. 17

2-2-1 Sequence Input Instructions . 17

2-2-2 Sequence Output Instructions . 18

2-2-3 Sequence Control Instructions . 20

2-2-4 Timer and Counter Instructions . 21

2-2-5 Comparison Instructions. 23

2-2-6 Data Movement Instructions. 26

2-2-7 Data Shift Instructions . 29

2-2-8 Increment/Decrement Instructions . 31

2-2-9 Symbol Math Instructions. 32

2-2-10 Conversion Instructions . 38

2-2-11 Logic Instructions . 40

2-2-12 Special Math Instructions . 42

2-2-13 Floating-point Math Instructions . 42

2-2-14 Table Data Processing Instructions. 47

2-2-15 Data Control Instructions . 48

2-2-16 Subroutine Instructions. 50

2-2-17 Interrupt Control Instructions . 51

2-2-18 High-speed Counter and Pulse Output Instructions 53

2-2-19 Step Instructions . 54

2-2-20 I/O Refresh Instructions . 54

2-2-21 Serial Communications Instructions. 55

2-2-22 Debugging Instructions. 55

2-2-23 Failure Diagnosis Instructions . 56

2-2-24 Other Instructions . 56

2-2-25 Block Programming Instructions . 56

2-3 Alphabetical List of Instructions by Mnemonic . 58

2-4 List of Instructions by Function Code. 66
11

Instruction Classifications by Function Section 2-1
2-1 Instruction Classifications by Function
The following table lists the FQM1 instructions by function. (The instructions
appear by order of their function in Section 3 Instructions.)

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction

Sequence
input
instructions

--- LD LOAD LD NOT LOAD NOT AND AND

AND NOT AND NOT OR OR OR NOT OR NOT

AND LD AND LOAD OR LD OR LOAD --- ---

Sequence
output
instructions

--- OUT OUTPUT OUT NOT OUTPUT NOT KEEP KEEP

DIFU DIFFERENTI-
ATE UP

DIFD DIFFERENTI-
ATE DOWN

--- ---

Set/Reset SET SET RSET RESET --- ---

Sequence
control
instructions

--- END END NOP NO OPERA-
TION

--- ---

Interlock IL INTERLOCK ILC INTERLOCK
CLEAR

--- ---

Jump JMP JUMP JME JUMP END

Timer and
counter
instructions
(BCD)

Timer
(with timer num-
bers)

TIM TIMER TIMH HIGH-SPEED
TIMER

TMHH ONE-MS
TIMER

Counter
(with counter num-
bers)

CNT COUNTER CNTR REVERSIBLE
TIMER

--- ---

Comparison
instructions

Symbol
comparison

LD, AND, OR
+
=, <>, <, <=, >,
>=

Symbol com-
parison
(unsigned)

LD, AND, OR
+
=, <>, <, <=, >,
>= + L

Symbol com-
parison (dou-
ble-word,
unsigned)

LD, AND, OR
+
=, <>, <, <=, >,
>= +S

Symbol
comparison
(signed)

LD, AND, OR
+
=, <>, <, <=, >,
>= + SL

Symbol com-
parison (dou-
ble-word,
signed)

--- --- --- ---

Data
comparison
(Condition Flags)

CMP UNSIGNED
COMPARE

CMPL DOUBLE
UNSIGNED
COMPARE

CPS SIGNED
BINARY
COMPARE

CPSL DOUBLE
SIGNED
BINARY
COMPARE

ZCP AREA RANGE
COMPARE

ZCPL DOUBLE
AREA RANGE
COMPARE

Table
compare

MCMP MULTIPLE
COMPARE

TCMP TABLE COM-
PARE

BCMP UNSIGNED
BLOCK COM-
PARE

BCMP2 EXPANDED
BLOCK COM-
PARE

--- --- --- ---

Data
movement
instructions

Single/
double-word

MOV MOVE MOVL DOUBLE
MOVE

MVN MOVE NOT

MVNL DOUBLE
MOVE NOT

--- --- --- ---

Bit/digit MOVB MOVE BIT MOVD MOVE DIGIT --- ---

Exchange XCHG DATA
EXCHANGE

--- --- --- ---

Block/bit transfer XFER BLOCK
TRANSFER

BSET BLOCK SET --- ---

Distribute/collect DIST SINGLE
WORD DIS-
TRIBUTE

COLL DATA COL-
LECT

--- ---
12

Instruction Classifications by Function Section 2-1
Data shift
instructions

1-bit shift SFT SHIFT REG-
ISTER

SFTR REVERSIBLE
SHIFT REG-
ISTER

ASLL DOUBLE
SHIFT LEFT

ASL ARITHMETIC
SHIFT LEFT

ASR ARITHMETIC
SHIFT RIGHT

ASRL DOUBLE
SHIFT RIGHT

0000 hex asynchro-
nous

ASFT ASYNCHRO-
NOUS SHIFT
REGISTER

--- --- --- ---

Word shift WSFT WORD SHIFT --- --- --- ---

1-bit rotate ROL ROTATE LEFT ROLL DOUBLE
ROTATE LEFT

RLNC ROTATE LEFT
WITHOUT
CARRY

RLNL DOUBLE
ROTATE LEFT
WITHOUT
CARRY

ROR ROTATE
RIGHT

RORL DOUBLE
ROTATE
RIGHT

RRNC ROTATE
RIGHT WITH-
OUT CARRY

RRNL DOUBLE
ROTATE
RIGHT WITH-
OUT CARRY

--- ---

1 digit shift SLD ONE DIGIT
SHIFT LEFT

SRD ONE DIGIT
SHIFT RIGHT

--- ---

Increment/
decrement
instructions

BCD ++B INCREMENT
BCD

++BL DOUBLE
INCREMENT
BCD

– –B DECRE-
MENT BCD

– –BL DOUBLE
DECRE-
MENT BCD

--- --- --- ---

Binary ++ INCREMENT
BINARY

++L DOUBLE
INCREMENT
BINARY

– – DECRE-
MENT
BINARY

– –L DOUBLE
DECRE-
MENT
BINARY

--- --- --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
13

Instruction Classifications by Function Section 2-1
Symbol
math
instructions

Binary add + SIGNED
BINARY ADD
WITHOUT
CARRY

+L DOUBLE
SIGNED
BINARY ADD
WITHOUT
CARRY

+C SIGNED
BINARY ADD
WITH CARRY

+CL DOUBLE
SIGNED
BINARY ADD
WITH CARRY

--- --- --- ---

BCD add +B BCD ADD
WITHOUT
CARRY

+BL DOUBLE BCD
ADD
WITHOUT
CARRY

+BC BCD ADD
WITH CARRY

+BCL DOUBLE BCD
ADD WITH
CARRY

--- --- --- ---

Binary subtract – SIGNED
BINARY SUB-
TRACT
WITHOUT
CARRY

–L DOUBLE
SIGNED
BINARY
SUBTRACT
WITHOUT
CARRY

–C SIGNED
BINARY
SUBTRACT
WITH CARRY

–CL DOUBLE
SIGNED
BINARY WITH
CARRY

--- --- --- ---

BCD subtract –B BCD
SUBTRACT
WITHOUT
CARRY

–BL DOUBLE BCD
SUBTRACT
WITHOUT
CARRY

–BC BCD
SUBTRACT
WITH CARRY

–BCL DOUBLE BCD
SUBTRACT
WITH CARRY

--- --- --- ---

Binary multiply * SIGNED
BINARY
MULTIPLY

*L DOUBLE
SIGNED
BINARY
MULTIPLY

*U UNSIGNED
BINARY
MULTIPLY

*UL DOUBLE
UNSIGNED
BINARY
MULTIPLY

--- --- --- ---

BCD multiply *B BCD
MULTIPLY

*BL DOUBLE BCD
MULTIPLY

--- ---

Binary divide / SIGNED
BINARY
DIVIDE

/L DOUBLE
SIGNED
BINARY
DIVIDE

/U UNSIGNED
BINARY
DIVIDE

/UL DOUBLE
UNSIGNED
BINARY
DIVIDE

--- --- --- ---

BCD divide /B BCD DIVIDE /BL DOUBLE BCD
DIVIDE

--- ---

Conversion
instructions

BCD/Binary con-
vert

BIN BCD-TO-
BINARY

BINL DOUBLE
BCD-TO-
DOUBLE
BINARY

BCD BINARY-TO-
BCD

BCDL DOUBLE
BINARY-TO-
DOUBLE BCD

NEG 2’S COMPLE-
MENT

NEGL DOUBLE 2’S
COMPLE-
MENT

ASCII/HEX convert ASC ASCII CON-
VERT

HEX ASCII TO HEX --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
14

Instruction Classifications by Function Section 2-1
Logic
instructions

Logical AND/OR ANDW LOGICAL
AND

ANDL DOUBLE
LOGICAL
AND

ORW LOGICAL OR

ORWL DOUBLE
LOGICAL OR

XORW EXCLUSIVE
OR

XORL DOUBLE
EXCLUSIVE
OR

XNRW EXCLUSIVE
NOR

XNRL DOUBLE
EXCLUSIVE
NOR

--- ---

Complement COM COMPLE-
MENT

COML DOUBLE
COMPLE-
MENT

--- ---

Special
math
instructions

--- APR ARITHMETIC
PROCESS

BCNT BIT
COUNTER

AXIS VIRTUAL
AXIS

Floating-
point math
instructions

Floating point/
binary convert

FIXL FLOATING TO
32-BIT

FLTL 32-BIT TO
FLOATING

--- ---

Floating- point
basic math

+F FLOATING-
POINT ADD

–F FLOATING-
POINT
SUBTRACT

/F FLOATING-
POINT
DIVIDE

*F FLOATING-
POINT
MULTIPLY

--- --- --- ---

Floating- point
trigonometric

RAD DEGREES TO
RADIANS

DEG RADIANS TO
DEGREES

SIN SINE

COS COSINE TAN TANGENT ASIN ARC SINE

ACOS ARC COSINE ATAN ARC TAN-
GENT

--- ---

Floating- point
math

SQRT SQUARE
ROOT

EXP EXPONENT LOG LOGARITHM

PWR EXPONEN-
TIAL POWER

--- --- --- ---

Symbol compari-
son and conver-
sion*

LD, AND, OR
+
=, <>, <, <=, >,
>= + F

Symbol com-
parison (sin-
gle-precision
floating point)

--- --- --- ---

Table data
processing
instructions

Record-to-word
processing

MAX FIND
MAXIMUM

MIN FIND
MINIMUM

--- ---

Data control
instructions

--- SCL SCALING SCL2 SCALING 2 SCL3 SCALING 3

AVG AVERAGE --- --- --- ---

Subroutines
instructions

--- SBS SUBROU-
TINE CALL

MCRO MACRO SBN SUBROU-
TINE ENTRY

RET SUBROU-
TINE
RETURN

JSB JUMP TO
SUBROUTINE

--- ---

Interrupt
control
instructions

--- MSKS SET
INTERRUPT
MASK

MSKR READ INTER-
RUPT MASK

CLI CLEAR
INTERRUPT

DI DISABLE
INTERRUPTS

EI ENABLE
INTERRUPTS

STIM INTERVAL
TIMER

High-speed
counter/
pulse out-
put instruc-
tions

--- INI MODE CON-
TROL

PRV HIGH-SPEED
COUNTER PV
READ

--- ---

CTBL COMPARI-
SON TABLE
LOAD

SPED SPEED OUT-
PUT

PULS SET PULSES

PLS2 PULSE OUT-
PUT

ACC ACCELERA-
TION CON-
TROL

--- ---

Step
instructions

--- STEP STEP DEFINE SNXT STEP START

I/O Refresh
instructions

--- IORF I/O REFRESH --- --- --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
15

Instruction Classifications by Function Section 2-1
Serial com-
munica-
tions
instructions

--- TXD TRANSMIT RXD RECEIVE STUP CHANGE
SERIAL PORT
SETUP

Debugging
instructions

--- TRSM TRACE
MEMORY
SAMPLING

--- --- --- ---

Failure
diagnosis
instructions

--- FAL FAILURE
ALARM

FALS SEVERE
FAILURE
ALARM

--- ---

Other
instructions

--- STC SET CARRY CLC CLEAR
CARRY

--- ---

Block
program-
ming
instructions

Define block pro-
gram area

BPRG BLOCK PRO-
GRAM BEGIN

BEND BLOCK PRO-
GRAM END

--- ---

IF branch
processing

IF
bit_address

CONDI-
TIONAL
BLOCK
BRANCHING

IF NOT
bit_address

CONDI-
TIONAL
BLOCK
BRANCHING
(NOT)

ELSE CONDI-
TIONAL
BLOCK
BRANCHING
(ELSE)

IEND CONDI-
TIONAL
BLOCK
BRANCHING
END

--- --- --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
16

Instruction Functions Section 2-2
2-2 Instruction Functions

2-2-1 Sequence Input Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

LOAD
LD

@LD
%LD

Indicates a logical start and creates an ON/OFF execution condition
based on the ON/OFF status of the specified operand bit.

Start of logic
Not required

80

LOAD NOT
LD NOT

@LD NOT
%LD NOT

Indicates a logical start and creates an ON/OFF execution condition
based on the reverse of the ON/OFF status of the specified operand
bit.

Start of logic
Not required

82

AND
AND

@AND
%AND

Takes a logical AND of the status of the specified operand bit and the
current execution condition.

Continues on
rung
Required

83

AND NOT
 AND NOT

@AND NOT
%AND NOT

Reverses the status of the specified operand bit and takes a logical
AND with the current execution condition.

Continues on
rung
Required

85

OR
OR

@OR
%OR

Takes a logical OR of the ON/OFF status of the specified operand bit
and the current execution condition.

Continues on
rung
Required

86

OR NOT
OR NOT

@OR NOT
%OR NOT

Reverses the status of the specified bit and takes a logical OR with the
current execution condition

Continues on
rung
Required

87

Bus bar

Starting
point of
block

Bus bar

Starting
point of
block

Bus bar

Bus bar
17

Instruction Functions Section 2-2
2-2-2 Sequence Output Instructions

AND LOAD
AND LD

Continues on
rung
Required

89

OR LOAD
OR LD

Continues on
rung
Required

91

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

OUTPUT

OUT

Outputs the result (execution condition) of the logical processing to the
specified bit.

Output
Required

96

OUTPUT NOT

OUT NOT

Reverses the result (execution condition) of the logical processing, and
outputs it to the specified bit.

Output
Required

97

KEEP

KEEP

011

Output
Required

98

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

Logic block Logic block

LD

LD

AND LD

to

to

Serial connection between logic block A and
logic block B.

Logic block B

Logic block A

Takes a logical AND between logic blocks.

Logic block

Logic block LD

LD

OR LD

to

to

Logic block A

Logic block B

Takes a logical OR between logic blocks.

Parallel connection between logic block A
and logic block B.

KEEP(011)

B

S (Set)

R (Reset)

B: Bit

Set

Reset

Status of B

S execution
condition

R execution
condition

Operates as a latching relay.

ON
OFF

ON
OFF

ON
OFF
18

Instruction Functions Section 2-2
DIFFERENTIATE
UP

DIFU

013

Output
Required

102

DIFFERENTIATE
DOWN

DIFD

014

Output
Required

102

SET
SET

@SET
%SET

Output
Required

104

RESET
RSET

@RSET
%RSET

Output
Required

104

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

DIFU(013)

B

B: Bit

Status of B

One cycle

DIFU(013) turns the designated bit ON for one cycle when the
execution condition goes from OFF to ON (rising edge).

Execution condition

DIFD(014)

B

B: Bit

Status of B
One cycle

DIFD(014) turns the designated bit ON for one cycle when the
execution condition goes from ON to OFF (falling edge).

Execution condition

SET

B
B: Bit

Status of B

SET turns the operand bit ON when the execution condition is ON.

Execution condition
of SET

RSET

B
B: Bit

Status of B

RSET turns the operand bit OFF when the execution condition is ON.

Execution condition
of RSET
19

Instruction Functions Section 2-2
2-2-3 Sequence Control Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

END
END
001

Output
Not required

106

NO OPERATION
NOP
000

This instruction has no function. (No processing is performed for
NOP(000).)

Output
Not required

106

INTERLOCK
IL

002

Output
Required

107

INTERLOCK
CLEAR

ILC
003

Indicates the end to an interlocked program section. All outputs
between IL(002) and ILC(003) are interlocked when the execution con-
dition for IL(002) is OFF. IL(002) and ILC(003) are normally used in
pairs.

Output
Not required

107

JUMP
JMP
004

Output
Required

110

JUMP END
JME
005

Indicates the end of a jump initiated by JMP(004). Output
Not required

110

END(001) Indicates the end of a program.

Task 1 Program A

END

I/O refresh

IL(002)
Interlocks all outputs between IL(002) and ILC(003) when the
execution condition for IL(002) is OFF. IL(002) and ILC(003) are
normally used in pairs.

Execution
condition

Execution
condition ON

Execution
condition OFF

Outputs
interlocked (e.g.,
outputs OFF and
timers reset.).

Normal
executionInterlocked section

of the program

ILC(003)

JMP(004)
N

N: Jump number

When the execution condition for JMP(004) is OFF, program
execution jumps directly to the first JME(005) in the program with
the same jump number. JMP(004) and JME(005) are used in pairs.

Execution condition
Instructions
jumped

Instructions in this section
are not executed and out-
put status is maintained.
The instruction execution
time for these instructions
is eliminated.

Instructions
executed

JME(005)

N

N: Jump number
20

Instruction Functions Section 2-2
2-2-4 Timer and Counter Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

TIMER
TIM

(BCD)

Output
Required

115

HIGH-SPEED
TIMER

TIMH
015

(BCD)

Output
Required

118

ONE-MS TIMER
TMHH

540
(BCD)

TMHH(540) operates a decrementing timer with units of 1-ms. The set-
ting range for the set value (SV) is 0 to 9.999 s (BCD).
The timing charts for TMHH(540) are the same as those given above
for TIMH(015).

Output
Required

120

TIM

N

S

N: Timer number
S: Set value

SV

SV

Timer input

Timer PV

Timer input

Timer PV

TIM operates a decrementing timer with units of 0.1-s. The setting
range for the set value (SV) is 0 to 999.9 s (BCD).

Completion
Flag

Completion
Flag

When Timer Input Turns OFF before Completion Flag Turns ON

TIMH(015)

N

S

N: Timer number
S: Set value

SV

Timer input

Timer PV

Timer input

Timer PV

Completion
Flag

Completion
Flag

TIMH(015) operates a decrementing timer with units of 10-ms.
The setting range for the set value (SV) is 0 to 99.99 s (BCD).

When Timer Input Turns OFF before Completion Flag Turns ON

ON

OFF

0

SV

ON

OFF

0

ON

OFF

ON
OFF

TMHH(540)

N

S

N: Timer number
S: Set value
21

Instruction Functions Section 2-2
COUNTER
CNT

(BCD)

Output
Required

122

REVERSIBLE
COUNTER

CNTR
012

(BCD)

Output
Required

125

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

CNT

N

S

Count
input

Reset
input

N: Counter
number
S: Set value SV

Count input

Counter PV

Completion
Flag

Reset input

CNT operates a decrementing counter. The setting range for the set
value (SV) is 0 to 9,999 (BCD).

CNTR(012)

N

S

Incre-
ment
input

Decre-
ment
input

Reset
input

N: Counter
number
S: Set value

SV

+1

SV −1

Increment input

Counter PV

Decrement input

Counter PV

Completion Flag

Counter PV

Completion Flag

CNTR(012) operates a reversible counter. The counter is increment-
ed on the increment input and decremented on the decrement input.
22

Instruction Functions Section 2-2
2-2-5 Comparison Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

Symbol Compari-
son (Unsigned)
LD, AND, OR + =,

<>, <, <=, >, >=
300 (=)

305 (<>)
310 (<)

315 (<=)
320 (>)

325(>=)

LD: Start of
logic, Not
required
AND, OR:
Continues
on rung,
Required

129

Symbol Compari-
son (Double-
word, unsigned)
LD, AND, OR + =,
<>, <, <=, >, >= +

L
301 (=)

306 (<>)
311 (<)

316 (<=)
321 (>)

326 (>=)

S1: Comparison
data 1
S2: Comparison
data 2

Symbol comparison instructions (double-word, unsigned) compare two
values (constants and/or the contents of specified double-word data) in
unsigned 32-bit binary data and create an ON execution condition when
the comparison condition is true. There are three types of symbol com-
parison instructions, LD (LOAD), AND, and OR.

LD: Start of
logic, Not
required
AND, OR:
Continues
on rung,
Required

129

Symbol Compari-
son (Signed)
LD, AND, OR + =,

<>, <, <=, >, >=
+S

302 (=)
307 (<>)

312 (<)
317 (<=)

322 (>)
327 (>=)

S1: Comparison
data 1
S2: Comparison
data 2

Symbol comparison instructions (signed) compare two values (con-
stants and/or the contents of specified words) in signed 16-bit binary (4-
digit hexadecimal) and create an ON execution condition when the com-
parison condition is true. There are three types of symbol comparison
instructions, LD (LOAD), AND, and OR.

LD: Start of
logic, Not
required
AND, OR:
Continues
on rung,
Required

129

S1

S2

Symbol & options

S1: Comparison
data 1
S2: Comparison
data 2

LD

AND

OR

<

<

<

ON execution condition when
comparison result is true.

ON execution condition
when comparison result
is true.

Symbol comparison instructions (unsigned) compare two values
(constants and/or the contents of specified words) in 16-bit binary
data and create an ON execution condition when the comparison
condition is true. There are three types of symbol comparison
instructions, LD (LOAD), AND, and OR.

ON execution condition when
comparison result is true.
23

Instruction Functions Section 2-2
Symbol Compari-
son (Double-
word, signed)
LD, AND, OR + =,

<>, <, <=, >, >=
+SL

303 (=)
308 (<>)

313 (<)
318 (<=)

323 (>)
328 (>=)

S1: Comparison
data 1
S2: Comparison
data 2

Symbol comparison instructions (double-word, signed) compare two
values (constants and/or the contents of specified double-word data) in
signed 32-bit binary (8-digit hexadecimal) and create an ON execution
condition when the comparison condition is true. There are three types
of symbol comparison instructions, LD (LOAD), AND, and OR.

LD: Start of
logic, Not
required
AND, OR:
Continues
on rung,
Required

129

UNSIGNED COM-
PARE

CMP
020

Output
Required

135

DOUBLE
UNSIGNED
COMPARE

CMPL
060

Output
Required

137

SIGNED BINARY
COMPARE

CPS
114

Output
Required

140

DOUBLE
SIGNED BINARY
COMPARE

CPSL
115

Output
Required

142

MULTIPLE COM-
PARE

MCMP
@MCMP

019

Output
Required

145

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

CMP(020)

S1

S2

S1: Comparison
data 1
S2: Comparison
data 2

Compares two unsigned binary values (constants and/or the contents
of specified words) and outputs the result to the Arithmetic Flags in
the Auxiliary Area.

Unsigned binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

CMPL(060)

S1

S2

S1: Comparison
data 1
S2: Comparison
data 2

S1+1 S2+1

Compares two double unsigned binary values (constants and/or the
contents of specified words) and outputs the result to the Arithmetic
Flags in the Auxiliary Area.

Unsigned binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

CPS(114)

S1

S2

S1: Comparison
data 1
S2: Comparison
data 2

Compares two signed binary values (constants and/or the contents of
specified words) and outputs the result to the Arithmetic Flags in the
Auxiliary Area.

Signed binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

CPSL(115)

S1

S2

S1: Comparison
data 1
S2: Comparison
data 2

S1+1 S2+1

Compares two double signed binary values (constants and/or the
contents of specified words) and outputs the result to the Arithmetic
Flags in the Auxiliary Area.

Signed binary
comparison

Arithmetic Flags
(>, >=, =, <=, <, <>)

MCMP(019)

S1

S2

R

S1: 1st word of
set 1
S2: 1st word of
set 2
R: Result word

R

Compares 16 consecutive words with another 16 consecutive words
and turns ON the corresponding bit in the result word where the
contents of the words are not equal.

Comparison

0: Words
are equal.
1: Words
aren't
equal.
24

Instruction Functions Section 2-2
TABLE COM-
PARE

TCMP
@TCMP

085

Output
Required

147

UNSIGNED
BLOCK COM-
PARE

BCMP
@BCMP

068

Output
Required

149

EXPANDED
BLOCK COM-
PARE

BCMP2
@BCMP2

502

Compares the source data to up to 256 ranges (defined by upper and
lower limits) and turns ON the corresponding bit in the result word when
the source data is within a range.

Output
Required

152

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

TCMP(085)

S

T

R

S: Source data
T: 1st word of
table
R: Result word

R

Compares the source data to the contents of 16 words and turns
ON the corresponding bit in the result word when the contents are
equal.

1: Data are
equal.
0: Data aren't
equal.

Comparison

BCMP(068)

S

T

R

S: Source data
T: 1st word of
table
R: Result word

T+3 1

0

14

15

T+29

T+31

T+1

T+2

T+28
T+30

T

S

R

to

to

to

to

Ranges

Upper limit

Compares the source data to 16 ranges (defined by 16 lower limits
and 16 upper limits) and turns ON the corresponding bit in the result
word when the source data is within the range.

1: In range
0: Not in range

Lower limit

Source data

BCMP2(502)

S

T

R

S: Source data
T: 1st word of
block
R: Result word

T+1

T+3

T+2N+1

S

T

T+2

T+4

T+2N+2

0

1

D
N

D+15 max.

Bit

1: In range
0: Not in range

Source data

Range 0 A

Range 1 A

Range N A

n=255 max.

Range 0 B

Range 1 B

Range N B

Note: A can be less than
or equal to B or
greater the B.
25

Instruction Functions Section 2-2
2-2-6 Data Movement Instructions

AREA RANGE
COMPARE

ZCP
088

Compares the 16-bit unsigned binary value in CD (word contents or
constant) to the range defined by LL and UL and outputs the results to
the Arithmetic Flags in the Auxiliary Area.

Output
Required

155

DOUBLE AREA
RANGE COM-
PARE

ZCPL
116

Compares the 32-bit unsigned binary value in CD and CD+1 (word con-
tents or constant) to the range defined by LL and UL and outputs the
results to the Arithmetic Flags in the Auxiliary Area.

Output
Required

158

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

MOVE
MOV

@MOV
021

Output
Required

160

DOUBLE MOVE
MOVL

@MOVL
498

Output
Required

162

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ZCP(088)

CD

LL

UL

CD: Compare
data (1 word)
LL: Lower limit of
range
UL: Upper limit of
range

ZCPL(116)

CD

LL

UL

CD: Compare
data (2 words)
LL: Lower limit of
range
UL: Upper limit of
range

MOV(021)

S

D

S: Source
D: Destination

Transfers a word of data to the specified word.

Source word

Destination word

Bit status not
changed.

MOVL(498)

S

D

S: 1st source
word
D: 1st destination
word

S+1

D+1

S

D

Bit status not
changed.

Transfers two words of data to the specified words.
26

Instruction Functions Section 2-2
MOVE NOT
MVN

@MVN
022

Output
Required

161

DOUBLE MOVE
NOT

MVNL
@MVNL

499

Output
Required

164

MOVE BIT
MOVB

@MOVB
082

Output
Required

165

MOVE DIGIT
MOVD

@MOVD
083

Output
Required

167

BLOCK
TRANSFER

XFER
@XFER

070

Output
Required

169

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

MVN(022)

S

D

S: Source
D: Destination

Transfers the complement of a word of data to the specified word.

Source word

Bit status
inverted.

Destination word

MVNL(499)

S

D

S: 1st source
word
D: 1st destination
word

S+1

D+1

S

D

Transfers the complement of two words of data to the specified words.

Bit status
inverted.

S

C

D

MOVB(082)

S: Source word or
data
C: Control word
D: Destination
word

Transfers the specified bit.

S

C

D

MOVD(083)

S: Source word or
data
C: Control word
D: Destination
word

Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

XFER(070)

N

S

D

N: Number of
words
S: 1st source
word
D: 1st destination
word

S+(N−1) D+(N−1)

to to
N words

Transfers the specified number of consecutive words.
27

Instruction Functions Section 2-2
BLOCK SET
BSET

@BSET
071

Output
Required

171

DATA
EXCHANGE

XCHG
@XCHG

073

Output
Required

173

SINGLE WORD
DISTRIBUTE

DIST
@DIST

080

Output
Required

174

DATA COLLECT
COLL

@COLL
081

Output
Required

176

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

BSET(071)

S

St

E

S: Source word
St: Starting word
E: End word

E

St

Source word Destination words

Copies the same word to a range of consecutive words.

XCHG(073)

E1

E2

E1: 1st exchange
word
E2: Second
exchange word

E2E1

Exchanges the contents of the two specified words.

DIST(080)

S

Bs

Of

S: Source word
Bs: Destination
base address
Of: Offset

sS B

Bs+n

Of

Transfers the source word to a destination word calculated by adding
an offset value to the base address.

COLL(081)

Bs

Of

D

Bs: Source base
address
Of: Offset
D: Destination
word

Bs

Bs+n

Of

Transfers the source word (calculated by adding an offset value to the
base address) to the destination word.
28

Instruction Functions Section 2-2
2-2-7 Data Shift Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

SHIFT REGISTER
SFT
010

Output
Required

178

REVERSIBLE
SHIFT REGISTER

SFTR
@SFTR

084

Output
Required

180

ASYNCHRO-
NOUS SHIFT
REGISTER

ASFT
@ASFT

017

Output
Required

183

WORD SHIFT
WSFT

@WSFT
016

Output
Required

185

ARITHMETIC
SHIFT LEFT

ASL
@ASL

025

Output
Required

186

SFT(010)

St

E

Data
input

Shift
input
Reset
input

St: Starting word
E: End word

E St+1, St+2 St

Lost Status of data
input for each shift
input

Operates a shift register.

SFTR(084)

C

St

E

C: Control word
St: Starting word
E: End word

E

E

Data inputSt

St

Creates a shift register that shifts data to either the right or the left.

Shift
direc-
tionData

input

ASFT(017)

C

St

E

C: Control word
St: Starting word
E: End word

E

E

St

St

•
•

•
•

•
•

Clear

Shift

Shift

Zero data

Non-zero data

Shift enabled

Shift direction

Shifts all non-zero word data within the specified word range either
towards St or toward E, replacing 0000Hex word data.

WSFT(016)

S

St

E

S: Source word
St: Starting word
E: End word

E St

Lost

Shifts data between St and E in word units.

ASL(025)

Wd

Wd: Word

Shifts the contents of Wd one bit to the left.
29

Instruction Functions Section 2-2
DOUBLE SHIFT
LEFT

ASLL
@ASLL

570

Output
Required

188

ARITHMETIC
SHIFT RIGHT

ASR
@ASR

026

Output
Required

189

DOUBLE SHIFT
RIGHT

ASRL
@ASRL

571

Output
Required

191

ROTATE LEFT
ROL

@ROL
027

Output
Required

192

DOUBLE
ROTATE LEFT

ROLL
@ROLL

572

Output
Required

193

ROTATE LEFT
WITHOUT
CARRY

RLNC
@RLNC

574

Output
Required

198

DOUBLE
ROTATE LEFT
WITHOUT
CARRY

RLNL
@RLNL

576

Output
Required

199

ROTATE RIGHT
ROR

@ROR
028

Output
Required

195

DOUBLE
ROTATE RIGHT

RORL
@RORL

573

Output
Required

196

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ASLL(570)

Wd: Word

Wd WdWd+1

Shifts the contents of Wd and Wd +1 one bit to the left.

ASR(026)

Wd

Wd: Word

Shifts the contents of Wd one bit to the right.

ASRL(571)

Wd

Wd: Word

WdWd+1

Shifts the contents of Wd and Wd +1 one bit to the right.

ROL(027)

Wd

Wd: Word

Shifts all Wd bits one bit to the left including the Carry Flag (CY).

ROLL(572)

Wd

Wd: Word

Shifts all Wd and Wd + 1 bits one bit to the left including the Carry Flag
(CY).

Wd+1 Wd

RLNC(574)

Wd

Wd: Word

Wd

Shifts all Wd bits one bit to the left not including the Carry Flag (CY).

RLNL(576)

Wd

Wd: Word

Wd+1 Wd

Shifts all Wd and Wd +1 bits one bit to the left not including the Carry
Flag (CY).

ROR(028)

Wd: Word

Wd

15 14 1 0 CY

D
Wd

Shifts all Wd bits one bit to the right including the Carry Flag (CY).

RORL(573)

Wd

Wd: Word

WdWd+1

Shifts all Wd and Wd +1 bits one bit to the right including the Carry
Flag (CY).
30

Instruction Functions Section 2-2
2-2-8 Increment/Decrement Instructions

ROTATE RIGHT
WITHOUT
CARRY

RRNC
@RRNC

575

Output
Required

201

DOUBLE
ROTATE RIGHT
WITHOUT
CARRY

RRNL
@RRNL

577

Output
Required

202

ONE DIGIT SHIFT
LEFT

SLD
@SLD

074

Output
Required

204

ONE DIGIT SHIFT
RIGHT

SRD
@SRD

075

Output
Required

205

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

INCREMENT
BINARY

++
@++
590

Output
Required

207

DOUBLE INCRE-
MENT BINARY

++L
@++L

591

Output
Required

209

DECREMENT
BINARY

– –
@– –

592

Output
Required

210

DOUBLE DEC-
REMENT
BINARY

– –L
@– –L

593

Output
Required

212

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

RRNC(575)

Wd

Wd: Word

Wd

Shifts all Wd bits one bit to the right not including the Carry Flag (CY).
The contents of the rightmost bit of Wd shifts to the leftmost bit and to
the Carry Flag (CY).

RRNL(577)

Wd

Wd: Word
Wd+1 Wd

Shifts all Wd and Wd +1 bits one bit to the right not including the Carry
Flag (CY). The contents of the rightmost bit of Wd +1 is shifted to the
leftmost bit of Wd, and to the Carry Flag (CY).

SLD(074)

St

E

St: Starting word
E: End word

E

Lost

St

Shifts data by one digit (4 bits) to the left.

SRD(075)

St

E

St: Starting word
E: End word

E St

Lost

Shifts data by one digit (4 bits) to the right.

++(590)

Wd

Wd: Word

Increments the 4-digit hexadecimal content of the specified word by 1.

Wd Wd

++L(591)

Wd

Wd: Word

Wd+1 Wd Wd+1 Wd

Increments the 8-digit hexadecimal content of the specified words by
1.

(592)− −

Wd

Wd: Word

Wd Wd

Decrements the 4-digit hexadecimal content of the specified word by
1.

− − L(593)

Wd

Wd: 1st word

Wd+1 Wd Wd+1 Wd

Decrements the 8-digit hexadecimal content of the specified words by
1.
31

Instruction Functions Section 2-2
2-2-9 Symbol Math Instructions

INCREMENT
BCD

++B
@++B

594

Output
Required

214

DOUBLE INCRE-
MENT BCD

++BL
@++BL

595

Output
Required

216

DECREMENT
BCD

– –B
@– –B

596

Output
Required

218

DOUBLE DEC-
REMENT BCD

– –BL
@– –BL

597

Output
Required

220

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SIGNED BINARY
ADD WITHOUT
CARRY

+
@+
400

Output
Required

223

DOUBLE
SIGNED BINARY
ADD WITHOUT
CARRY

+L
@+L
401

Output
Required

225

SIGNED BINARY
ADD WITH
CARRY

+C
@+C

402

Output
Required

226

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

++B(594)

Wd: Word

Wd Wd Wd

Increments the 4-digit BCD content of the specified word by 1.

++BL(595)

Wd

Wd: 1st word

Wd+1 Wd Wd+1 Wd

Increments the 8-digit BCD content of the specified words by 1.

− − B(596)

Wd

Wd: Word

−1 Wd Wd

Decrements the 4-digit BCD content of the specified word by 1.

− − BL(597)

Wd

Wd: 1st word

Wd+1 Wd Wd+1 Wd

Decrements the 8-digit BCD content of the specified words by 1.

+(400)

R

Au

Ad

Au: Augend word
Ad: Addend word
R: Result word

RCY

+

Au

Ad

CY will turn ON
when there is a
carry.

(Signed binary)

(Signed binary)

(Signed binary)

Adds 4-digit (single-word) hexadecimal data and/or constants.

+L(401)

R

Au

Ad

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word

R+1CY

+

R

Ad+1

Au

Ad

Adds 8-digit (double-word) hexadecimal data and/or constants.

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when
there is a
carry.

Au+1

+C(402)

R

Au

Ad

Au: Augend word
Ad: Addend word
R: Result word

CY+

RCY

Au

Ad

Adds 4-digit (single-word) hexadecimal data and/or constants with the
Carry Flag (CY).

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn ON
when there is a
carry.
32

Instruction Functions Section 2-2
DOUBLE
SIGNED BINARY
ADD WITH
CARRY

+CL
@+CL

403

Output
Required

228

BCD ADD WITH-
OUT CARRY

+B
@+B

404

Output
Required

230

DOUBLE BCD
ADD WITHOUT
CARRY

+BL
@+BL

405

Output
Required

231

BCD ADD WITH
CARRY

+BC
@+BC

406

Output
Required

233

DOUBLE BCD
ADD WITH
CARRY

+BCL
@+BCL

407

Output
Required

234

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

+CL(403)

R

Au

Ad

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word

+

CY

CY

R+1 R

Ad+1

Au

Ad

CY will turn ON
when there is a
carry.

Au+1

(Signed binary)

(Signed binary)

(Signed binary)

Adds 8-digit (double-word) hexadecimal data and/or constants with the
Carry Flag (CY).

+B(404)

Au

Ad

R

Au: Augend word
Ad: Addend word
R: Result word

CY

+

(BCD)

(BCD)

(BCD)

Au

Ad

R

Adds 4-digit (single-word) BCD data and/or constants.

CY will turn ON
when there is a
carry.

Au

Ad

R

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result
word

+BL(405)

R+1CY

+

(BCD)

(BCD)

(BCD)R

Ad+1

Au

Ad

Au+1

CY will turn ON
when there is a
carry.

Adds 8-digit (double-word) BCD data and/or constants.

+BC(406)

R

Au

Ad

Au: Augend word
Ad: Addend word
R: Result word

CY+

RCY

(BCD)

(BCD)

(BCD)

Au

Ad

Adds 4-digit (single-word) BCD data and/or constants with the Carry
Flag (CY).

CY will turn ON
when there is a
carry.

+BCL(407)

R

Au

Ad

Au: 1st augend
word
Ad: 1st addend
word
R: 1st result word

R+1

CY+

RCY

(BCD)

(BCD)

(BCD)

Ad+1

Au

Ad

CY will turn
ON when there
is a carry.

Adds 8-digit (double-word) BCD data and/or constants with the Carry
Flag (CY).

Au+1
33

Instruction Functions Section 2-2
SIGNED BINARY
SUBTRACT
WITHOUT
CARRY

–
@–
410

Output
Required

236

DOUBLE
SIGNED BINARY
SUBTRACT
WITHOUT
CARRY

–L
@–L
411

Output
Required

237

SIGNED BINARY
SUBTRACT
WITH CARRY

–C
@–C

412

Output
Required

241

DOUBLE
SIGNED BINARY
WITH CARRY

–CL
@–CL

413

Output
Required

243

BCD SUBTRACT
WITHOUT
CARRY

–B
@–B

414

Output
Required

245

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

(410)

R

−
Mi

Su

Mi: Minuend word
Su: Subtrahend
word
R: Result word

RCY

−

Mi

Su

Subtracts 4-digit (single-word) hexadecimal data and/or constants.

(Signed binary)

(Signed binary)

(Signed binary)CY will turn ON
when there is a
borrow.

L(411)

R

Mi

Su

Mi: Minuend word
Su: Subtrahend
word
R: Result word

−

CY RR+1

−

Mi+1

Su+1

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)

CY will turn
ON when
there is a
borrow.

Subtracts 8-digit (double-word) hexadecimal data and/or constants.

−C(412)

R

Mi

Su

Mi: Minuend word
Su: Subtrahend
word
R: Result word

CY

RCY

−

Mi

Su

Subtracts 4-digit (single-word) hexadecimal data and/or constants
with the Carry Flag (CY). (Signed binary)

(Signed binary)

(Signed binary)
CY will turn ON
when there is a
borrow.

−CL(413)

Mi

Su

R

Mi: Minuend word
Su: Subtrahend
word
R: Result word R+1

CY

RCY

Mi+1

Su+1

Mi

Su

CY will turn
ON when
there is a
borrow.

Subtracts 8-digit (double-word) hexadecimal data and/or constants
with the Carry Flag (CY).

(Signed binary)

(Signed binary)

(Signed binary)

−

−B(414)

R

Mi

Su

Mi: Minuend word
Su: Subtrahend
word
R: Result word

Mi

Su

Subtracts 4-digit (single-word) BCD data and/or constants.

CY will turn ON
when there is a
carry.

−

RCY

(BCD)

(BCD)

(BCD)
34

Instruction Functions Section 2-2
DOUBLE BCD
SUBTRACT
WITHOUT
CARRY

–BL
@–BL

415

Output
Required

247

BCD SUBTRACT
WITH CARRY

–BC
@–BC

416

Output
Required

250

DOUBLE BCD
SUBTRACT
WITH CARRY

–BCL
@–BCL

417

Output
Required

251

SIGNED BINARY
MULTIPLY

*
@*

420

Output
Required

253

DOUBLE
SIGNED BINARY
MULTIPLY

*L
@*L
421

Output
Required

255

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

−BL(415)

R

Su

Mi: 1st minuend
word
Su: 1st
subtrahend word
R: 1st result word

Mi

R+1CY R

(BCD)

(BCD)

(BCD)

−

Mi +1

Su+1

Mi

Su

Subtracts 8-digit (double-word) BCD data and/or constants.

CY will turn ON
when there is a
borrow.

−BC(416)

Mi

Su

R

Mi: Minuend word
Su: Subtrahend
word
R: Result word

CY

CY

(BCD)

(BCD)

(BCD)R

−

Mi

Su

CY will turn ON
when there is a
borrow.

Subtracts 4-digit (single-word) BCD data and/or constants with the
Carry Flag (CY).

−BCL(417)

Mi

Su

R

Mi: 1st minuend
word
Su: 1st
subtrahend word
R: 1st result word

R+1

CY

RCY

(BCD)

(BCD)

(BCD)

−

Mi +1

Su+1

Mi

Su

Subtracts 8-digit (double-word) BCD data and/or constants with the
Carry Flag (CY).

CY will turn ON
when there is a
borrow.

*(420)

R

Md

Mr

Md: Multiplicand
word
Mr: Multiplier
word
R: Result word

R +1 R

Md

Mr

Multiplies 4-digit signed hexadecimal data and/or constants.

(Signed binary)

(Signed binary)

(Signed binary)

×

Md

Mr

Md: 1st
multiplicand word
Mr: 1st multiplier
word
R: 1st result word

*L(421)

R

R + 1 RR + 3 R + 2

×

Md + 1

Mr + 1

Md

Mr

(Signed binary)

(Signed binary)

(Signed binary)

Multiplies 8-digit signed hexadecimal data and/or constants.
35

Instruction Functions Section 2-2
UNSIGNED
BINARY
MULTIPLY

*U
@*U

422

Output
Required

256

DOUBLE
UNSIGNED
BINARY
MULTIPLY

*UL
@*UL

423

Output
Required

258

BCD MULTIPLY
*B

@*B
424

Output
Required

259

DOUBLE BCD
MULTIPLY

*BL
@*BL

425

Output
Required

261

SIGNED BINARY
DIVIDE

/
@/

430

Output
Required

262

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

*U(422)

R

Md

Mr

Md: Multiplicand
word
Mr: Multiplier
word
R: Result word

R +1 R

×

Md

Mr

Multiplies 4-digit unsigned hexadecimal data and/or constants.

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

*UL(423)

R

Md

Mr

Md: 1st
multiplicand word
Mr: 1st multiplier
word
R: 1st result word

R + 1 RR + 3 R + 2

Md + 1

Mr + 1

Md

Mr

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Multiplies 8-digit unsigned hexadecimal data and/or constants.

×

*B(424)

R

Md

Mr

Md: Multiplicand
word
Mr: Multiplier
word
R: Result word

R +1 R

(BCD)

(BCD)

(BCD)

×

Md

Mr

Multiplies 4-digit (single-word) BCD data and/or constants.

*BL(425)

R

Md

Mr

Md: 1st
multiplicand word
Mr: 1st multiplier
word
R: 1st result word

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

×

Md + 1 Md

Mr + 1 Mr

Multiplies 8-digit (double-word) BCD data and/or constants.

/(430)

R

Dd

Dr

Dd: Dividend word
Dr: Divisor word
R: Result word

Dd

Dr

R +1 R

÷

Remainder Quotient

(Signed binary)

(Signed binary)

(Signed binary)

Divides 4-digit (single-word) signed hexadecimal data and/or
constants.
36

Instruction Functions Section 2-2
DOUBLE
SIGNED BINARY
DIVIDE

/L
@/L
431

Output
Required

264

UNSIGNED
BINARY DIVIDE

/U
@/U
432

Output
Required

265

DOUBLE
UNSIGNED
BINARY DIVIDE

/UL
@/UL

433

Output
Required

267

BCD DIVIDE
/B

@/B
434

Output
Required

268

DOUBLE BCD
DIVIDE

/BL
@/BL

435

Output
Required

270

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

/L(431)

R

Dd

Dr

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

R + 1 RR + 3 R + 2

÷

Dd + 1 Dd

Dr + 1 Dr

QuotientRemainder

(Signed binary)

(Signed binary)

(Signed binary)

Divides 8-digit (double-word) signed hexadecimal data and/or
constants.

/U(432)

R

Dd

Dr

Dd: Dividend
word
Dr: Divisor word
R: Result word

R +1 R

÷

Dd

Dr

Remainder Quotient

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Divides 4-digit (single-word) unsigned hexadecimal data and/or
constants.

/UL(433)

R

Dd

Dr

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

R + 1 RR + 3 R + 2

÷

Dd + 1

Dr + 1

Remainder

Divides 8-digit (double-word) unsigned hexadecimal data and/or
constants.

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Dd

Dr

Quotient

/B(434)

R

Dd

Dr

Dd: Dividend
word
Dr: Divisor word
R: Result word

R +1 R

(BCD)

(BCD)

(BCD)

÷

Dd

Dr

Remainder

Divides 4-digit (single-word) BCD data and/or constants.

Quotient

/BL(435)

R

Dd

Dr

Dd: 1st dividend
word
Dr: 1st divisor
word
R: 1st result word

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

÷

Dd + 1

Dr + 1

Remainder

Dr

Dd

Divides 8-digit (double-word) BCD data and/or constants.

Quotient
37

Instruction Functions Section 2-2
2-2-10 Conversion Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

BCD-TO-BINARY
BIN

@BIN
023

Output
Required

272

DOUBLE BCD-
TO-DOUBLE
BINARY

BINL
@BINL

058

Output
Required

273

BINARY-TO-BCD
BCD

@BCD
024

Output
Required

275

DOUBLE
BINARY-TO-
DOUBLE BCD

BCDL
@BCDL

059

Output
Required

276

2’S COMPLE-
MENT

NEG
@NEG

160

Output
Required

278

DOUBLE 2’S
COMPLEMENT

NEGL
@NEGL

161

Output
Required

279

BIN(023)

S

R

S: Source word
R: Result word

(BCD) (BIN)R

Converts BCD data to binary data.

BINL(058)

S

R

S: 1st source
word
R: 1st result word

(BCD) (BIN)

(BCD) (BIN)

R

R+1

Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data.

BCD(024)

S

R

S: Source word
R: Result word

(BCD)(BIN) R

Converts a word of binary data to a word of BCD data.

BCDL(059)

S

R

S: 1st source
word
R: 1st result word

(BIN) (BCD)

(BIN) (BCD)

R

R+1

Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data.

NEG(160)

S

R

S: Source word
R: Result word

(S) (R)

Calculates the 2's complement of a word of hexadecimal data.

2's complement
(Complement + 1)

NEGL(161)

S

R

S: 1st source
word
R: 1st result word

(S+1, S) (R+1, R)

Calculates the 2's complement of two words of hexadecimal data.

2's complement
(Complement + 1)
38

Instruction Functions Section 2-2
ASCII CONVERT
ASC

@ASC
086

Output
Required

281

ASCII TO HEX
HEX

@HEX
162

Output
Required

285

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ASC(086)

S

D

Di

S: Source word
Di: Digit
designator
D: 1st destination
word

Right (0)Left (1)

Di

Converts 4-bit hexadecimal digits in the source word into their 8-bit
ASCII equivalents.

First digit to convert

Number of
digits (n+1)

15 12 11 8 7 4 3 0

HEX(162)

S

Di

D

S: 1st source
word
Di: Digit
designator
D: Destination
word

Number of digits (n+1)

Right (0)Left (1)

Di

First digit to write

First byte to convert

Converts up to 4 bytes of ASCII data in the source word to their
hexadecimal equivalents and writes these digits in the specified
destination word.
39

Instruction Functions Section 2-2
2-2-11 Logic Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

LOGICAL AND
ANDW

@ANDW
034

Output
Required

290

DOUBLE
LOGICAL AND

ANDL
@ANDL

610

Output
Required

292

LOGICAL OR
ORW

@ORW
035

Output
Required

293

DOUBLE
LOGICAL OR

ORWL
@ORWL

611

Output
Required

295

EXCLUSIVE OR
XORW

@XORW
036

Output
Required

297

I1
I2
R

ANDW(034)

I1: Input 1
I2: Input 2
R: Result word

I1
1

1

0

0

I2
1

0

1

0

R
1

0

0

0

I1. I2→ R

Takes the logical AND of corresponding bits in single words of word
data and/or constants.

ANDL(610)

I1
I2
R

I1: Input 1
I2: Input 2
R: Result word

Takes the logical AND of corresponding bits in double words of word
data and/or constants.

I1, I1+1

1

1

0

0

I2, I2+1

1

0

1

0

R, R+1

1

0

0

0

(I1, I1+1). (I2, I2+1)→ (R, R+1)

I1: Input 1
I2: Input 2
R: Result word

I1
I2
R

ORW(035)

I1
1

1

0

0

I2
1

0

1

0

R

1

1

1

0

I1 + I2 → R

Takes the logical OR of corresponding bits in single words of word
data and/or constants.

I1
I2
R

ORWL(611)

I1: Input 1
I2: Input 2
R: Result word

(I1, I1+1) + (I2, I2+1) →(R, R+1)

I1, I1+1

1

1

0

0

I2, I2+1

1

0

1

0

R, R+1

1

1

1

0

Takes the logical OR of corresponding bits in double words of word
data and/or constants.

I1
I2
R

XORW(036)

I1: Input 1
I2: Input 2
R: Result word

I1. I2 + I1.I2 → R

I1
1

1

0

0

I2
1

0

1

0

R

0

1

1

0

Takes the logical exclusive OR of corresponding bits in single words
of word data and/or constants.
40

Instruction Functions Section 2-2
DOUBLE EXCLU-
SIVE OR

XORL
@XORL

612

Output
Required

298

EXCLUSIVE NOR
XNRW

@XNRW
037

Output
Required

300

DOUBLE EXCLU-
SIVE NOR

XNRL
@XNRL

613

Output
Required

302

COMPLEMENT
COM

@COM
029

Output
Required

303

DOUBLE COM-
PLEMENT

COML
@COML

614

Output
Required

305

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

XORL(612)

I1
I2
R

I1: Input 1
I2: Input 2
R: Result word

(I1, I1+1). (I2, I2+1) + (I1, I1+1). (I2, I2+1) → (R, R+1)

I1, I1+1

1

1

0

0

I2, I2+1

1

0

1

0

R, R+1

0

1

1

0

Takes the logical exclusive OR of corresponding bits in double words
of word data and/or constants.

I1
I2
R

XNRW(037)

I1: Input 1
I2: Input 2
R: Result word

I1. I2 + I1.I2 →R

I1
1

1

0

0

I2
1

0

1

0

R

1

0

0

1

Takes the logical exclusive NOR of corresponding single words of
word data and/or constants.

XNRL(613)

I1
I2
R

I1: Input 1
I2: Input 2
R: 1st result word

(I1, I1+1). (I2, I2+1) + (I1, I1+1). (I2, I2+1)→ (R, R+1)

I1, I1+1

1

1

0

0

I2, I2+1

1

0

1

0

R, R+1

1

0

0

1

Takes the logical exclusive NOR of corresponding bits in double
words of word data and/or constants.

Wd: Word

Wd

COM(029) Turns OFF all ON bits and turns ON all OFF bits in Wd.

Wd→Wd: 1 → 0 and 0 → 1

COML(614)

Wd

Wd: Word

Turns OFF all ON bits and turns ON all OFF bits in Wd and Wd+1.

(Wd+1, Wd) → (Wd+1, Wd)
41

Instruction Functions Section 2-2
2-2-12 Special Math Instructions

2-2-13 Floating-point Math Instructions

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ARITHMETIC
PROCESS

APR
@APR

069

Calculates the sine, cosine, or a linear extrapolation of the source data.
The linear extrapolation function allows any relationship between X and
Y to be approximated with line segments.

Output
Required

306

BIT COUNTER
BCNT

@BCNT
067

Output
Required

313

VIRTUAL AXIS
AXIS

981

Produces a virtual pulse output for trapezoidal acceleration/decelera-
tion.

Output
Required

314

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

FLOATING TO
32-BIT

FIXL
@FIXL

451

Output
Required

323

32-BIT TO
FLOATING

FLTL
@FLTL

453

Output
Required

325

APR(069)

C

S

R

C: Control word
S: Source data
R: Result word

BCNT(067)

N

S

R

N: Number of
words
S: 1st source
word
R: Result word

S+(N −1)

R

to

Counts the total number of ON bits in the specified word(s).

N words
Counts the number
of ON bits.

Binary result

AXIS(981)

M

C

T

M: Mode
designation
C: Processing
cycle
T: 1st settings
table word

FIXL(451)

S

R

S: 1st source
word
R: 1st result word

S+1 S

R+1 R Signed binary data
(32 bits)

Floating-point data
(32 bits)

Converts a 32-bit floating-point value to 32-bit signed binary data and
places the result in the specified result words.

S

R

FLTL(453)

S: 1st source
word
R: 1st result word

R+1 R

SS+1

Floating-point data
(32 bits)

Signed binary data
(32 bits)

Converts a 32-bit signed binary value to 32-bit floating-point data and
places the result in the specified result words.
42

Instruction Functions Section 2-2
FLOATING-
POINT ADD

+F
@+F
454

Output
Required

326

FLOATING-
POINT SUB-
TRACT

–F
@–F

455

Output
Required

328

FLOATING-
POINT MULTIPLY

*F
@*F
456

Output
Required

330

FLOATING-
POINT DIVIDE

/F
@/F
457

Output
Required

331

DEGREES TO
RADIANS

RAD
@RAD

458

Output
Required

333

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

+F(454)

R

Au

Ad

Au: 1st augend
word
AD: 1st addend
word
R: 1st result word

R+1 R

+

AuAu+1

AdAd+1

Adds two 32-bit floating-point numbers and places the result in the
specified result words.

Augend (floating-
point data, 32 bits)

Addend (floating-
point data, 32 bits)

Result (floating-
point data, 32 bits)

F(455)

R

Mi

Su

Mi: 1st Minuend
word
Su: 1st
Subtrahend word
R: 1st result word

R+1 R

−

MiMi+1

SuSu+1

Minuend (floating-
point data, 32 bits)

Subtrahend (floating-
point data, 32 bits)

Result (floating-point
data, 32 bits)

Subtracts one 32-bit floating-point number from another and places
the result in the specified result words.

*F(456)

Md

Mr

R

Md: 1st
Multiplicand word
Mr: 1st Multiplier
word
R: 1st result word

R+1 R

×

MdMd+1

MrMr+1

Multiplies two 32-bit floating-point numbers and places the result in
the specified result words.

Multiplicand (floating-
point data, 32 bits)

Multiplier (floating-
point data, 32 bits)

Result (floating-point
data, 32 bits)

/F(457)

R

Dd

Dr

Dd: 1st Dividend
word
Dr: 1st Divisor
word
R: 1st result word

R+1 R

DdDd+1

DrDr+1÷

Result (floating-
point data, 32 bits)

Divisor (floating-
point data, 32 bits)

Dividend (floating-
point data, 32 bits)

Divides one 32-bit floating-point number by another and places the
result in the specified result words.

RAD(458)

S

R

S: 1st source
word
R: 1st result word R+1 R

SS+1

Converts a 32-bit floating-point number from degrees to radians and
places the result in the specified result words.

Result (radians, 32-bit
floating-point data)

Source (degrees, 32-bit
floating-point data)
43

Instruction Functions Section 2-2
RADIANS TO
DEGREES

DEG
@DEG

459

Output
Required

335

SINE
SIN

@SIN
460

Output
Required

336

COSINE
COS

@COS
461

Output
Required

338

TANGENT
TAN

@TAN
462

Output
Required

339

ARC SINE
ASIN

@ASIN
463

Output
Required

341

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

DEG(459)

S

R

S: 1st source
word
R: 1st result word R+1 R

SS+1

Result (degrees, 32-bit
floating-point data)

Source (radians, 32-bit
floating-point data)

Converts a 32-bit floating-point number from radians to degrees and
places the result in the specified result words.

SIN(460)

S

R

S: 1st source
word
R: 1st result word R+1 R

SS+1SIN

Calculates the sine of a 32-bit floating-point number (in radians) and
places the result in the specified result words.

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

COS(461)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1COS Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

Calculates the cosine of a 32-bit floating-point number (in radians)
and places the result in the specified result words.

S

R

TAN(462)

S: 1st source
word
R: 1st result word R+1 R

SS+1TAN

Result (32-bit
floating-point
data)

Source (32-bit
floating-point
data)

Calculates the tangent of a 32-bit floating-point number (in radians)
and places the result in the specified result words.

ASIN(463)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1SIN−1

Calculates the arc sine of a 32-bit floating-point number and places
the result in the specified result words. (The arc sine function is the
inverse of the sine function; it returns the angle that produces a given
sine value between −1 and 1.)

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)
44

Instruction Functions Section 2-2
ARC COSINE
ACOS

@ACOS
464

Output
Required

343

ARC TANGENT
ATAN

@ATAN
465

Output
Required

344

SQUARE ROOT
SQRT

@SQRT
466

Output
Required

346

EXPONENT
EXP

@EXP
467

Output
Required

348

LOGARITHM
LOG

@LOG
468

Output
Required

350

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

ACOS(464)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1COS−1

Calculates the arc cosine of a 32-bit floating-point number and places
the result in the specified result words. (The arc cosine function is the
inverse of the cosine function; it returns the angle that produces a
given cosine value between −1 and 1.)

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

ATAN(465)

S

R

S: 1st source
word
R: 1st result word

R+1 R

SS+1TAN−1

Calculates the arc tangent of a 32-bit floating-point number and
places the result in the specified result words. (The arc tangent
function is the inverse of the tangent function; it returns the angle that
produces a given tangent value.)

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

S

R

SQRT(466)

S: 1st source
word
R: 1st result word R+1 R

SS+1 Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

Calculates the square root of a 32-bit floating-point number and
places the result in the specified result words.

EXP(467)

S

R

S: 1st source
word
R: 1st result word R+1 R

SS+1

e

Calculates the natural (base e) exponential of a 32-bit floating-point
number and places the result in the specified result words.

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

LOG(468)

S

R

S: 1st source
word
R: 1st result word

Calculates the natural (base e) logarithm of a 32-bit floating-point
number and places the result in the specified result words.

Source (32-bit
floating-point
data)

Result (32-bit
floating-point
data)

R+1 R

SS+1loge
45

Instruction Functions Section 2-2
EXPONENTIAL
POWER

PWR
@PWR

840

Output
Required

351

FLOATING SYM-
BOL COMPARI-
SON

LD, AND. or OR
+

=F (329),
<>F (330),

<F (331),
<=F (332),

>F (333),
or >=F (334)

Compares the specified single-precision data (32 bits) or constants
and creates an ON execution condition if the comparison result is true.
Three kinds of symbols can be used with the floating-point symbol
comparison instructions: LD (Load), AND, and OR.

LD:
Start of logic,
Not required

AND or OR:
Continues on
rung,
Required

353

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

PWR(840)

B

E

R

B: 1st base word
E: 1st exponent
word
R: 1st result word

R+1B+1 S

EE+1

R

Base

Raises a 32-bit floating-point number to the power of another 32-bit
floating-point number.

Power

S1

S2

S1

S2

S1

S2

S1: Comparison data 1
S2: Comparison data 2

Symbol, option

Using LD:

Symbol, option

Using AND:

Symbol, option

Using OR:
46

Instruction Functions Section 2-2
2-2-14 Table Data Processing Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

FIND MAXIMUM
MAX

@MAX
182

Output
Required

357

FIND MINIMUM
MIN

@MIN
183

Output
Required

360

MAX(182)

C

R1

D

C: 1st control
word
R1: 1st word in
range
D: Destination
word

R1+(C −1)

R1
C

Finds the maximum value in the range.

Internal I/O
memory address

C words

Max.
value

No. of words

MIN(183)

C

R1

D

C: 1st control
word
R1: 1st word in
range
D: Destination
word

R1+(C −1)

R1
C

Finds the minimum value in the range.

Internal I/O
memory address

C words

Min. value

No. of words
47

Instruction Functions Section 2-2
2-2-15 Data Control Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

SCALING
SCL

@SCL
194

Output
Required

363

SCALING 2
SCL2

@SCL2
486

Output
Required

367

SCL(194)

S

P1

R

S: Source word
P1: 1st parameter
word
R: Result word

P1
P1 + 1
P1 + 2
P1 + 3

R (unsigned BCD)

Converts unsigned binary data into unsigned BCD data according to
the specified linear function.

Scaling is performed according
to the linear function defined by
points A and B.

Point B

Point A

Converted
value

Converted
value

S (unsigned binary)

Br

Ar
As (BIN)

Bs (BIN)

Ar (BCD)

Br (BCD)

SCL2(486)

S

P1

R

S: Source word
P1: 1st parameter
word
R: Result word ∆Y

∆X

∆Y

∆X

∆Y

∆X

∆X

∆Y

P1

P1 + 1

P1 + 2

R (signed BCD)

Offset

Negative Offset

Offset

R (signed BCD)

Offset of 0000

Offset

(Signed BCD)

R (signed BCD)

Positive Offset

S (signed
binary)

S (signed binary)

S (signed
binary)

Offset = 0000 hex

(Signed binary)

(Signed binary)

Converts signed binary data into signed BCD data according to the
specified linear function. An offset can be input in defining the linear
function.
48

Instruction Functions Section 2-2
SCALING 3
SCL3

@SCL3
487

Output
Required

371

AVERAGE
AVG
195

Output
Required

374

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SCL3(487)

S

P1

R

S: Source word
P1: 1st parameter
word
R: Result word

X

Y

X

Y

X

Y

S (signed BCD)

Offset S (signed BCD)

Negative Offset

Offset

∆

∆

S (signed BCD)

Offset of 0000

∆

∆

∆

∆

Converts signed BCD data into signed binary data according to the
specified linear function. An offset can be input in defining the linear
function.

Positive Offset

R (signed binary) R (signed binary)

Max. conversionMax.
conver-
sion

Min.
conver-
sion

Min. conversion

R (signed binary)

Max.
conver-
sion

Min. conversion

AVG(195)

S

N

R

S: Source word
N: Number of
cycles
R: Result word

R + N + 3

R

R + 1

R + 4

R + 5

Average Valid Flag

Pointer

Average

N values

N: Number of cycles

S: Source word

Calculates the average value of an input word for the specified
number of cycles.
49

Instruction Functions Section 2-2
2-2-16 Subroutine Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

SUBROUTINE
CALL

SBS
@SBS

091

Output
Required

378

MACRO
MCRO

@MCRO
099

Output
Required

383

SUBROUTINE
ENTRY

SBN
092

Output
Not required

387

SBS(091)

N

N: Subroutine
number

Calls the subroutine with the specified subroutine number and
executes that program.

Execution condition ON

Main program

Program end

Subroutine
program
(SBN(092) to
RET(093))

MCRO(099)

N

S

D

N: Subroutine
number
S: 1st input
parameter word
D: 1st output
parameter word

MCRO(099)

MCRO(099)

S+4

D+4

Calls the subroutine with the specified subroutine number and
executes that program using the input parameters in S to S+4 and the
output parameters in D to D+4.

Execution of sub-
routine between
SBN(092) and
RET(093).

The subroutine uses A510 to
A514 as inputs and A515 to
A519 as outputs.

A510

A511

A512

A513

A514

A515

A516

A517

A518

A519

SBN(092)

N

N: Subroutine
number

SBS

N

JSB

N

S

DSBN

N

RET

END

MCRO

N

S

D

Instructions written after RET(093)
will not be executed.

Subroutine region

or

Indicates the beginning of the subroutine program with the specified
subroutine number.

or
50

Instruction Functions Section 2-2
2-2-17 Interrupt Control Instructions

SUBROUTINE
RETURN

RET
093

Indicates the end of a subroutine program. Output
Not required

390

JUMP TO SUB-
ROUTINE

JSB
982

Calls the subroutine with the specified subroutine number regardless of
the status of the input condition and executes that program. Data
beginning with the word specified in S is passed to the subroutine.
After execution of the subroutine, the result data is passed to the area
beginning with the word specified in D.
The ON/OFF status of the input condition is set in an Auxiliary Area bit
so that it can be referenced from within the subroutine program.

Output
Required

390

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SET INTERRUPT
MASK

MSKS
@MSKS

690

Output
Required

394

READ
INTERRUPT
MASK

MSKR
@MSKR

692

Reads the current interrupt processing settings that were set with
MSKS(690).

Output
Required

396

CLEAR
INTERRUPT

CLI
@CLI

691

Output
Required

398

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

RET(093)

JSB(982)
N
S
D

N: Subroutine
number
S: 1st input
parameter word
D: 1st output
parameter word

MSKS(690)

N

S

N: Interrupt
identifier
S: Interrupt data

Sets up interrupt processing for I/O interrupts. Both I/O interrupt
tasks are masked (disabled) when the FQM1 is first turned ON.
MSKS(690) can be used to unmask or mask I/O interrupts.

Built-in inputs 0 to 3

I/O
interrupt

Mask (1) or unmask (0)
interrupt inputs 0 to 3.

MSKR(692)

N

D

N: Interrupt
identifier
D: Destination
word

CLI(691)

N

S

N: Interrupt
identifier
S: Interrupt data

Recorded interrupt cleared Recorded interrupt retained

N = 0 to 3

Clears or retains recorded interrupt inputs for I/O interrupts.

Interrupt
input n

Internal
status

Interrupt
input n

Internal
status
51

Instruction Functions Section 2-2
DISABLE INTER-
RUPTS

DI
@DI
693

Output
Required

399

ENABLE INTER-
RUPTS

EI
694

Output
Not required

400

INTERVAL TIMER
STIM

@STIM
980

Controls interval timers and controls the pulse output ports. Interval
timer control can be used to start one-shot or scheduled interrupt
tasks.

Output
Required

401

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

DI(693)
Disables execution of all interrupt tasks except the power OFF
interrupt.

Disables execution of all
interrupt tasks.

EI(694)
Enables execution of all interrupt tasks that were disabled with
DI(693).

Disables execution of all
interrupt tasks.

Enables execution of all
disabled interrupt tasks.

STIM(980)

C1

C2

C3
52

Instruction Functions Section 2-2
2-2-18 High-speed Counter and Pulse Output Instructions
Instruction

Mnemonic
Code

Symbol/Operand Function Location
Execution
condition

Page

MODE CONTROL
INI

@INI
880

P: Port specifier
C: Control data
NV: 1st word with
new PV

INI(880) is used to start and stop target value comparison, to
change the present value (PV) of a high-speed counter, to
change the circular maximum count for a high-speed counter
or pulse output counter, to change the PV of a pulse output, or
to stop pulse output.
INI(880) is also used, for example, to change the circular maxi-
mum count or present value for a sampling counter.

Output
Required

405

HIGH-SPEED
COUNTER PV
READ

PRV
@PRV

881

P: Port specifier
C: Control data
D: 1st destination
word

PRV(881) is used to read the present value (PV) of a high-
speed counter, pulse output, or high-speed counter latch.
PRV(881) is used to read analog I/O values for the FQM1-
MMA21.

Output
Required

411

COMPARISON
TABLE LOAD

CTBL
@CTBL

882

P: Port specifier
C: Control data
TB: 1st compari-
son table word

CTBL(882) is used to perform target value or range comparisons for
the present value (PV) of a high-speed counter. It is also used to start
high-speed analog sampling.

Output
Required

415

SPEED OUTPUT
SPED

@SPED
885

P: Port specifier
M: Output mode
F: 1st pulse fre-
quency word

SPED(885) is used to specify the frequency and perform pulse output
without acceleration or deceleration.
SPED(885) is also used to produce analog outputs for the FQM1-
MMA21.

Output
Required

422

SET PULSES
PULS

@PULS
886

P: Port specifier
T: Pulse type
N: Number of
pulses

PULS(886) is used to set the number of pulses for pulse output.
PULS(886) also executes pulse outputs for absolute positions.

Output
Required

428

INI(880)

P

C

NV

PRV(881)

P

C

D

CTBL(882)

P

C

TB

SPED(885)

P

M

F

PULS(886)

P

T

N

53

Instruction Functions Section 2-2
2-2-19 Step Instructions

2-2-20 I/O Refresh Instructions

PULSE OUTPUT
PLS2

@PLS2
887

P: Port specifier
M: Output mode
S: 1st word of set-
tings table

PLS2(887) is used to set the pulse frequency and acceleration/deceler-
ation rates, and to perform pulse output with acceleration/deceleration
(with different acceleration/deceleration rates). Only positioning is pos-
sible.

Output
Required

433

ACCELERATION
CONTROL

ACC
@ACC

888

P: Port specifier
M: Output mode
S: 1st word of set-
tings table

ACC(888) is used to set the pulse frequency and acceleration/deceler-
ation rates, and to perform pulse output with acceleration/deceleration
(with the same acceleration/deceleration rate). Both positioning and
speed control are possible.
ACC(888) is also used to produce slopped analog outputs for the
FQM1-MMA21.

Output
Required

438

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

STEP DEFINE
STEP

008

STEP(008) functions in following 2 ways, depending on its position and
whether or not a control bit has been specified.
(1)Starts a specific step.
(2)Ends the step programming area (i.e., step execution).
The step programming area extends from the first STEP(008) with a
step number and the first STEP(008) without a step number.

Output
Required

445

STEP START
SNXT

009

SNXT(009) is used in the following three ways:
(1)To start step programming execution.
(2)To proceed to the next step control bit.
(3)To end step programming execution.

Output
Required

445

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

I/O REFRESH
IORF

@IORF
097

Output
Required

462

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

PLS2(887)

P

M

S

ACC(888)

P

M

S

STEP(008)

B

B: Bit

SNXT(009)

B

B: Bit

IORF(097)

St

E

St: Starting word
E: End word

I/O Bit Area
Built-in I/O

I/O refreshing
St

E

Refreshes the specified I/O words of the Module's built-in I/O.
54

Instruction Functions Section 2-2
2-2-21 Serial Communications Instructions

2-2-22 Debugging Instructions

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

TRANSMIT
TXD

@TXD
236

Outputs the specified number of bytes of data starting from the speci-
fied word from the RS-232C or RS-422A port (no-protocol mode) built
into the Coordinator Module without conversion and using the start and
end codes specified in the System Setup.

Output
Required

464

RECEIVE
RXD

@RXD
235

Receives the specified number of bytes of data from the RS-232C or
RS-422A port (no-protocol mode) built into the Coordinator Module
without conversion and using the start and end codes specified in the
System Setup and store the data starting from the specified word.

Output
Required

469

CHANGE SERIAL
PORT SETUP

STUP
237

Changes the communications parameters of the built-in serial port on
the Coordinator Module during operation.

Output
Required

474

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

TRACE
MEMORY
SAMPLING

TRSM
045

When TRSM(045) is executed, the status of a preselected bit or word
is sampled and stored in Trace Memory. TRSM(045) can be used any-
where in the program, any number of times.

Output
Not required

477

TXD(236)

S

C

N

S: 1st source
word
C: Control word
N: Number of
bytes
0000 to 0100 hex
(0 to 256 decimal)

RXD(235)

D

C

N

D: 1st destination
word
C: Control word
N: Number of
bytes to store
0000 to 0100 hex
(0 to 256 decimal)

STUP(237)

C

S

C: Control word
(port)
S: First source
word

TRSM(045)
55

Instruction Functions Section 2-2
2-2-23 Failure Diagnosis Instructions

2-2-24 Other Instructions

2-2-25 Block Programming Instructions

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

FAILURE ALARM
FAL

@FAL
006

Output
Required

481

SEVERE
FAILURE ALARM

FALS
007

Output
Required

484

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

SET CARRY
STC

@STC
040

Sets the Carry Flag (CY). Output
Required

486

CLEAR CARRY
CLC

@CLC
041

Turns OFF the Carry Flag (CY). Output
Required

487

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

BLOCK
PROGRAM
BEGIN

BPRG
096

Output
Required

491

BLOCK
PROGRAM END

BEND
801

Define a block programming area. For every BPRG(096) there must be
a corresponding BEND(801).

Block program
Required

491

FAL(006)

N

C

N: FAL number
C: Error code to
generate (#0000
to #FFFF)

FAL

N

0000 ERR indicator flashes.

Generates or clears user-defined non-fatal errors. Non-fatal errors
do not stop FQM1 operation.

Execution of
FAL(006)
generates a
non-fatal error
with FAL
number N.

FAL Error Flag ON.

Error code stored.
Error code written to Error Log
Area.

FALS(007)

N

S

N:
S:

 FALS number
Error code to
generate
(#0000 to
#FFFF)

FALS

N

0000 ERR indicator lit.

Generates user-defined fatal errors. Fatal errors stop FQM1 operation.

Execution of
FALS(007)
generates a
fatal error
with FALS
number N.

FALS Error Flag ON.

Error code stored.
Error code written to Error Log
Area.

STC(040)

CLC(041)

BPRG(096)

N

N: Block program
number

Define a block programming area. For every BPRG(096) there must
be a corresponding BEND(801).

Block program

Executed when the execu-
tion condition is ON.
56

Instruction Functions Section 2-2
CONDITIONAL
BLOCK
BRANCHING

IF
802

IF (802) Block program
Required

494

CONDITIONAL
BLOCK
BRANCHING

IF
802

IF (802)
B

B: Bit operand

Block program
Required

494

CONDITIONAL
BLOCK
BRANCHING
(NOT)

IF NOT
802

IF (802) NOT
B

B: Bit operand

If the operand bit is OFF, the instructions between IF(802) and
ELSE(803) will be executed. If the operand bit is ON, the instructions
between ELSE(803) and IEND(804) will be executed.

Block program
Required

494

CONDITIONAL
BLOCK
BRANCHING
(ELSE)

ELSE
803

--- If the ELSE(803) instruction is omitted and the operand bit is ON, the
instructions between IF(802) and IEND(804) will be executed

Block program
Required

494

CONDITIONAL
BLOCK
BRANCHING
END

IEND
804

--- If the operand bit is OFF, only the instructions after IEND(804) will be
executed.

Block program
Required

494

Instruction
Mnemonic

Code

Symbol/Operand Function Location
Execution
condition

Page

If the execution condition is ON, the instructions between IF(802) and
ELSE(803) will be executed and if the execution condition is OFF, the
instructions between ELSE(803) and IEND(804) will be executed.

Execution
condition Execution

condition ON?

 "A" executed (be-
tween IF and ELSE).

 "B" executed
(after ELSE).

IF R (IF NOT R)

If the operand bit is ON, the instructions between IF(802) and
ELSE(803) will be executed. If the operand bit is OFF, the instructions
between ELSE(803) and IEND(804) will be executed.

Operand bit
ON?

 "A" executed
(between IF and
ELSE).

 "B" executed
(after ELSE).
57

Alphabetical List of Instructions by Mnemonic Section 2-3
2-3 Alphabetical List of Instructions by Mnemonic
A

Mnemonic Instruction Function code Upward
Differentiation

Downward
Differentiation

Page

ACC ACCELERATION CONTROL 888 @ACC --- 438

ACOS ARC COSINE 464 @ACOS --- 343

AND AND --- @AND %AND 83

AND < AND LESS THAN 310 --- --- 129

AND <> AND NOT EQUAL 305 --- --- 129

AND <>F AND FLOATING NOT EQUAL 330 --- --- 353

AND <>L AND DOUBLE NOT EQUAL 306 --- --- 129

AND <>S AND SIGNED NOT EQUAL 307 --- --- 129

AND <>SL AND DOUBLE SIGNED NOT EQUAL 308 --- --- 129

AND <F AND FLOATING LESS THAN 331 --- --- 353

AND <L AND DOUBLE LESS THAN 311 --- --- 129

AND <S AND SIGNED LESS THAN 312 --- --- 129

AND <SL AND DOUBLE SIGNED LESS THAN 313 --- --- 129

AND = AND EQUAL 300 --- --- 129

AND =F AND FLOATING EQUAL 329 --- --- 353

AND =L AND DOUBLE EQUAL 301 --- --- 129

AND =S AND SIGNED EQUAL 302 --- --- 129

AND =SL AND DOUBLE SIGNED EQUAL 303 --- --- 129

AND > AND GREATER THAN 320 --- --- 129

AND >F AND FLOATING GREATER THAN 333 --- --- 353

AND >L AND DOUBLE GREATER THAN 321 --- --- 129

AND >S AND SIGNED GREATER THAN 322 --- --- 129

AND >SL AND DOUBLE SIGNED GREATER THAN 323 --- --- 129

AND LD AND LOAD --- --- --- 89

AND NOT AND NOT --- --- --- 85

AND <= AND LESS THAN OR EQUAL 315 --- --- 129

AND <=F AND FLOATING LESS THAN OR EQUAL 332 --- --- 353

AND <=L AND DOUBLE LESS THAN OR EQUAL 316 --- --- 129

AND <=S AND SIGNED LESS THAN OR EQUAL 317 --- --- 129

AND <=SL AND DOUBLE SIGNED LESS THAN OR
EQUAL

318 --- --- 129

AND >= AND GREATER THAN OR EQUAL 325 --- --- 129

AND >=F AND FLOATING GREATER THAN OR
EQUAL

334 --- --- 353

AND >=L AND DOUBLE GREATER THAN OR
EQUAL

326 --- --- 129

AND >=S AND SIGNED GREATER THAN OR
EQUAL

327 --- --- 129

AND >=SL AND DOUBLE SIGNED GREATER THAN
OR EQUAL

328 --- --- 129

ANDL DOUBLE LOGICAL AND 610 @ANDL --- 292

ANDW LOGICAL AND 034 @ANDW --- 290

APR ARITHMETIC PROCESS 069 @APR --- 306

ASC ASCII CONVERT 086 @ASC --- 281

ASFT ASYNCHRONOUS SHIFT REGISTER 017 @ASFT --- 183

ASIN ARC SINE 463 @ASIN --- 341

ASL ARITHMETIC SHIFT LEFT 025 @ASL --- 186

ASLL DOUBLE SHIFT LEFT 570 @ASLL --- 188

ASR ARITHMETIC SHIFT RIGHT 026 @ASR --- 189

ASRL DOUBLE SHIFT RIGHT 571 @ASRL --- 191

ATAN ARC TANGENT 465 @ATAN --- 344
58

Alphabetical List of Instructions by Mnemonic Section 2-3
B

C

D

E

AVG AVERAGE 195 --- --- 374

AXIS VIRTUAL AXIS 981 --- --- 314

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

BCD BINARY-TO-BCD 024 @BCD --- 275

BCDL DOUBLE BINARY-TO-DOUBLE BCD 059 @BCDL --- 276

BCMP UNSIGNED BLOCK COMPARE 068 @BCMP --- 149

BCMP2 EXPANDED BLOCK COMPARE 502 @BCMP2 --- 152

BCNT BIT COUNTER 067 @BCNT --- 313

BEND BLOCK PROGRAM END 801 --- --- 491

BIN BCD-TO-BINARY 023 @BIN --- 272

BINL DOUBLE BCD-TO-DOUBLE BINARY 058 @BINL --- 273

BPRG BLOCK PROGRAM BEGIN 096 --- --- 491

BSET BLOCK SET 071 @BSET --- 171

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

CLC CLEAR CARRY 041 @CLC --- 487

CLI CLEAR INTERRUPT 691 @CLI --- 398

CMP COMPARE 020 --- --- 135

CMPL DOUBLE COMPARE 060 --- --- 137

CNT COUNTER --- --- --- 122

CNTR REVERSIBLE COUNTER 012 --- --- 125

COLL DATA COLLECT 081 @COLL --- 176

COM COMPLEMENT 029 @COM --- 303

COML DOUBLE COMPLEMENT 614 @COML --- 305

COS COSINE 461 @COS --- 338

CPS SIGNED BINARY COMPARE 114 --- --- 140

CPSL DOUBLE SIGNED BINARY COMPARE 115 --- --- 142

CTBL COMPARISON TABLE LOAD 882 @CTBL --- 415

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

DEG RADIANS-TO DEGREES 459 @DEG --- 335

DI DISABLE INTERRUPTS 693 @DI --- 399

DIFD DIFFERENTIATE DOWN 014 --- --- 102

DIFU DIFFERENTIATE UP 013 --- --- 102

DIST SINGLE WORD DISTRIBUTE 080 @DIST --- 174

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

EI ENABLE INTERRUPTS 694 --- --- 400

ELSE ELSE 803 --- --- 494

END END 001 --- --- 106

EXP EXPONENT 467 @EXP --- 348

Mnemonic Instruction Function code Upward
Differentiation

Downward
Differentiation

Page
59

Alphabetical List of Instructions by Mnemonic Section 2-3
F

H

I

J

K

L

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

FAL FAILURE ALARM 006 @FAL --- 481

FALS SEVERE FAILURE ALARM 007 --- --- 484

FIXL FLOATING TO 32-BIT 451 @FIXL --- 323

FLTL 32-BIT TO FLOATING 453 @FLTL --- 325

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

HEX ASCII TO HEX 162 @HEX --- 285

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

IEND IF END 804 --- --- 494

IF NOT (oper-
and)

IF NOT 802 --- --- 494

IF (input condi-
tion)

IF 802 --- --- 494

IF (operand) IF 802 --- --- 494

IL INTERLOCK 002 --- --- 107

ILC INTERLOCK CLEAR 003 --- --- 107

INI MODE CONTROL 880 @INI --- 405

IORF I/O REFRESH 097 @IORF --- 462

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

JME JUMP END 005 --- --- 110

JMP JUMP 004 --- --- 110

JSB JUMP TO SUBROUTINE 982 --- --- 390

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

KEEP KEEP 011 --- --- 98

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

LD LOAD --- @LD %LD 80

LD < LOAD LESS THAN 310 --- --- 129

LD <F LOAD FLOATING LESS THAN 331 --- --- 353

LD <> LOAD NOT EQUAL 305 --- --- 129

LD <>F LOAD FLOATING NOT EQUAL 330 --- --- 353

LD <>L LOAD DOUBLE NOT EQUAL 306 --- --- 129

LD <>S LOAD SIGNED NOT EQUAL 307 --- --- 129

LD <>SL LOAD DOUBLE SIGNED NOT EQUAL 308 --- --- 129

LD <L LOAD DOUBLE LESS THAN 311 --- --- 129

LD <S LOAD SIGNED LESS THAN 312 --- --- 129

LD <SL LOAD DOUBLE SIGNED LESS THAN 313 --- --- 129

LD = LOAD EQUAL 300 --- --- 129

LD =F LOAD FLOATING EQUAL 329 --- --- 353

LD =L LOAD DOUBLE EQUAL 301 --- --- 129

LD =S LOAD SIGNED EQUAL 302 --- --- 129
60

Alphabetical List of Instructions by Mnemonic Section 2-3
M

N

O

LD =SL LOAD DOUBLE SIGNED EQUAL 303 --- --- 129

LD > LOAD GREATER THAN 320 --- --- 129

LD >F LOAD FLOATING GREATER THAN 333 --- --- 353

LD >L LOAD DOUBLE GREATER THAN 321 --- --- 129

LD >S LOAD SIGNED GREATER THAN 322 --- --- 129

LD >SL LOAD DOUBLE SIGNED GREATER THAN 323 --- --- 129

LD NOT LOAD NOT --- --- --- 82

LD <= LOAD LESS THAN OR EQUAL 315 --- --- 129

LD <=F LOAD FLOATING LESS THAN OR EQUAL 332 --- --- 353

LD <=L LOAD DOUBLE LESS THAN OR EQUAL 316 --- --- 129

LD <=S LOAD SIGNED LESS THAN OR EQUAL 317 --- --- 129

LD <=SL LOAD DOUBLE SIGNED LESS THAN OR
EQUAL

318 --- --- 129

LD >= LOAD GREATER THAN OR EQUAL 325 --- --- 129

LD >=F LOAD FLOATING GREATER THAN OR
EQUAL

334 --- --- 353

LD >=L LOAD DOUBLE GREATER THAN OR
EQUAL

326 --- --- 129

LD >=S LOAD SIGNED GREATER THAN OR
EQUAL

327 --- --- 129

LD >=SL LOAD DOUBLE SIGNED GREATER THAN
OR EQUAL

328 --- --- 129

LOG LOGARITHM 468 @LOG --- 350

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

MAX FIND MAXIMUM 182 @MAX --- 357

MCMP MULTIPLE COMPARE 019 @MCMP --- 145

MCRO MACRO 099 @MCRO --- 383

MIN FIND MINIMUM 183 @MIN --- 360

MOV MOVE 021 @MOV --- 160

MOVB MOVE BIT 082 @MOVB --- 165

MOVD MOVE DIGIT 083 @MOVD --- 167

MOVL DOUBLE MOVE 498 @MOVL --- 162

MSKR READ INTERRUPT MASK 692 @MSKR --- 396

MSKS SET INTERRUPT MASK 690 @MSKS --- 394

MVN MOVE NOT 022 @MVN --- 161

MVNL DOUBLE MOVE NOT 499 @MVNL --- 164

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

NEG 2’S COMPLEMENT 160 @NEG --- 278

NEGL DOUBLE 2’S COMPLEMENT 161 @NEGL --- 279

NOP NO OPERATION 000 --- --- 106

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

OR OR --- @OR %OR 86

OR < OR LESS THAN 310 --- --- 129

OR <> OR NOT EQUAL 305 --- --- 129

OR <>F OR FLOATING NOT EQUAL 330 --- --- 353

OR <>L OR DOUBLE NOT EQUAL 306 --- --- 129

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page
61

Alphabetical List of Instructions by Mnemonic Section 2-3
P

R

OR <>S OR SIGNED NOT EQUAL 307 --- --- 129

OR <>SL OR DOUBLE SIGNED NOT EQUAL 308 --- --- 129

OR <F OR FLOATING LESS THAN 331 --- --- 353

OR <L OR DOUBLE LESS THAN 311 --- --- 129

OR <S OR SIGNED LESS THAN 312 --- --- 129

OR <SL OR DOUBLE SIGNED LESS THAN 313 --- --- 129

OR = OR EQUAL 300 --- --- 129

OR =F OR FLOATING EQUAL 329 --- --- 353

OR =L OR DOUBLE EQUAL 301 --- --- 129

OR =S OR SIGNED EQUAL 302 --- --- 129

OR =SL OR DOUBLE SIGNED EQUAL 303 --- --- 129

OR > OR GREATER THAN 320 --- --- 129

OR >F OR FLOATING GREATER THAN 333 --- --- 353

OR >L OR DOUBLE GREATER THAN 321 --- --- 129

OR >S OR SIGNED GREATER THAN 322 --- --- 129

OR >SL OR DOUBLE SIGNED GREATER THAN 323 --- --- 129

OR LD OR LOAD --- --- --- 91

OR NOT OR NOT --- --- --- 87

OR <= OR LESS THAN OR EQUAL 315 --- --- 129

OR <=F OR FLOATING LESS THAN OR EQUAL 332 --- --- 353

OR <=L OR DOUBLE LESS THAN OR EQUAL 316 --- --- 129

OR <=S OR SIGNED LESS THAN OR EQUAL 317 --- --- 129

OR <=SL OR DOUBLE SIGNED LESS THAN OR
EQUAL

318 --- --- 129

OR >= OR GREATER THAN OR EQUAL 325 --- --- 129

OR >=F OR FLOATING GREATER THAN OR
EQUAL

334 --- --- 353

OR >=L OR DOUBLE GREATER THAN OR EQUAL 326 --- --- 129

OR >=S OR SIGNED GREATER THAN OR EQUAL 327 --- --- 129

OR >=SL OR DOUBLE SIGNED GREATER THAN
OR EQUAL

328 --- --- 129

ORW LOGICAL OR 035 @ORW --- 293

ORWL DOUBLE LOGICAL OR 611 @ORWL --- 295

OUT OUTPUT --- --- --- 96

OUT NOT OUTPUT NOT --- --- --- 97

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

PRV HIGH-SPEED COUNTER PV READ 881 @PRV --- 411

PULS SET PULSES 886 @PULS --- 428

PLS2 PULSE OUTPUT 887 @PLS2 --- 433

PWR EXPONENTIAL POWER 840 @PWR --- 351

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

RAD DEGREES TO RADIANS 458 @RAD --- 350

RET SUBROUTINE RETURN 093 --- --- 390

RLNC ROTATE LEFT WITHOUT CARRY 574 @RLNC --- 198

RLNL DOUBLE ROTATE LEFT WITHOUT
CARRY

576 @RLNL --- 199

ROL ROTATE LEFT 027 @ROL --- 192

ROLL DOUBLE ROTATE LEFT 572 @ROLL --- 193

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page
62

Alphabetical List of Instructions by Mnemonic Section 2-3
S

T

W

X

ROR ROTATE RIGHT 028 @ROR --- 195

RORL DOUBLE ROTATE RIGHT 573 @RORL --- 196

RRNC ROTATE RIGHT WITHOUT CARRY 575 @RRNC --- 201

RRNL DOUBLE ROTATE RIGHT WITHOUT
CARRY

577 @RRNL --- 202

RSET RESET --- @RSET %RSET 104

RXD RECEIVE 235 @RXD -- 469

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

SBN SUBROUTINE ENTRY 092 --- --- 387

SBS SUBROUTINE CALL 091 @SBS --- 378

SCL SCALING 194 @SCL --- 363

SCL2 SCALING 2 486 @SCL2 --- 367

SCL3 SCALING 3 487 @SCL3 --- 371

SET SET --- @SET %SET 104

SFT SHIFT REGISTER 010 --- --- 178

SFTR REVERSIBLE SHIFT REGISTER 084 @SFTR --- 180

SIN SINE 460 @SIN --- 336

SLD ONE DIGIT SHIFT LEFT 074 @SLD --- 204

SNXT STEP START 009 --- --- 445

SPED SPEED OUTPUT 885 @SPED --- 422

SQRT SQUARE ROOT 466 @SQRT --- 346

SRD ONE DIGIT SHIFT RIGHT 075 @SRD --- 205

STC SET CARRY 040 @STC --- 486

STIM INTERVAL TIMER 980 @STIM --- 401

STEP STEP DEFINE 008 --- --- 445

STUP CHANGE SERIAL PORT SETUP 237 @STUP --- 474

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

TAN TANGENT 462 @TAN --- 339

TCMP TABLE COMPARE 085 @TCMP --- 147

TIM TIMER --- --- --- 115

TIMH HIGH-SPEED TIMER 015 --- --- 118

TMHH ONE-MS TIMER 540 --- --- 120

TRSM TRACE MEMORY SAMPLING 045 --- --- 477

TXD TRANSMIT 236 @TXD --- 464

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

WSFT WORD SHIFT 016 @WSFT --- 185

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

XCHG DATA EXCHANGE 073 @XCHG --- 173

XFER BLOCK TRANSFER 070 @XFER --- 169

XNRL DOUBLE EXCLUSIVE NOR 613 @XNRL --- 302

XNRW EXCLUSIVE NOR 037 @XNRW --- 300

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page
63

Alphabetical List of Instructions by Mnemonic Section 2-3
Z

Symbols

XORL DOUBLE EXCLUSIVE OR 612 @XORL --- 298

XORW EXCLUSIVE OR 036 @XORW --- 297

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

ZCP AREA RANGE COMPARE 088 --- --- 155

ZCPL DOUBLE AREA RANGE COMPARE 116 --- --- 158

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page

+ SIGNED BINARY ADD WITHOUT CARRY 400 @+ --- 223

++ INCREMENT BINARY 590 @++ --- 207

++B INCREMENT BCD 594 @++B --- 214

++BL DOUBLE INCREMENT BCD 595 @++BL --- 216

++L DOUBLE INCREMENT BINARY 591 @++L --- 209

+B BCD ADD WITHOUT CARRY 404 @+B --- 230

+BC BCD ADD WITH CARRY 406 @+BC --- 233

+BCL DOUBLE BCD ADD WITH CARRY 407 @+BCL --- 234

+BL DOUBLE BCD ADD WITHOUT CARRY 405 @+BL --- 231

+C SIGNED BINARY ADD WITH CARRY 402 @+C --- 226

+CL DOUBLE SIGNED BINARY ADD WITH
CARRY

403 @+CL --- 228

+F FLOATING-POINT ADD 454 @+F --- 326

+L DOUBLE SIGNED BINARY ADD
WITHOUT CARRY

401 @+L --- 225

– SIGNED BINARY SUBTRACT WITHOUT
CARRY

410 @– --- 236

– – DECREMENT BINARY 592 @– – --- 210

– –B DECREMENT BCD 596 @– –B --- 218

– –BL DOUBLE DECREMENT BCD 597 @– –BL --- 220

– –L DOUBLE DECREMENT BINARY 593 @– –L --- 212

–B BCD SUBTRACT WITHOUT CARRY 414 @–B --- 245

–BC BCD SUBTRACT WITH CARRY 416 @–BC --- 250

–BCL DOUBLE BCD SUBTRACT WITH CARRY 417 @–BCL --- 251

–BL DOUBLE BCD SUBTRACT WITHOUT
CARRY

415 @–BL --- 247

–C SIGNED BINARY SUBTRACT WITH
CARRY

412 @–C --- 241

–CL DOUBLE SIGNED BINARY SUBTRACT
WITH CARRY

413 @–CL --- 243

–F FLOATING-POINT SUBTRACT 455 @–F --- 328

* SIGNED BINARY MULTIPLY 420 @* --- 253

*B BCD MULTIPLY 424 @*B --- 259

*BL DOUBLE BCD MULTIPLY 425 @*BL --- 261

*F FLOATING-POINT MULTIPLY 456 @*F --- 330

*L DOUBLE SIGNED BINARY MULTIPLY 421 @*L --- 255

*U UNSIGNED BINARY MULTIPLY 422 @*U --- 256

*UL DOUBLE UNSIGNED BINARY MULTIPLY 423 @*UL --- 258

–L DOUBLE SIGNED BINARY SUBTRACT
WITHOUT CARRY

411 @–L --- 237

/ SIGNED BINARY DIVIDE 430 @/ --- 262

/B BCD DIVIDE 434 @/B --- 268

/BL DOUBLE BCD DIVIDE 435 @/BL --- 270

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page
64

Alphabetical List of Instructions by Mnemonic Section 2-3
/F FLOATING-POINT DIVIDE 457 @/F --- 331

/L DOUBLE SIGNED BINARY DIVIDE 431 @/L --- 264

/U UNSIGNED BINARY DIVIDE 432 @/U --- 265

/UL DOUBLE UNSIGNED BINARY DIVIDE 433 @/UL --- 267

Mnemonic Instruction FUN code Upward
Differentiation

Downward
Differentiation

Page
65

List of Instructions by Function Code Section 2-4
2-4 List of Instructions by Function Code
Function code Mnemonic Instruction Upward

Differentiation
Downward

Differentiation
Page

--- LD LOAD @LD %LD 80

--- LD NOT LOAD NOT --- --- 82

--- AND AND @AND %AND 83

--- AND NOT AND NOT --- --- 85

--- OR OR @OR %OR 86

--- OR NOT OR NOT --- --- 87

--- AND LD AND LOAD --- --- 89

--- OR LD OR LOAD --- --- 91

--- OUT OUTPUT --- --- 96

--- OUT NOT OUTPUT NOT --- --- 97

--- SET SET @SET %SET 104

--- RSET RESET @RSET %RSET 104

--- TIM TIMER --- --- 115

--- CNT COUNTER --- --- 122

000 NOP NO OPERATION --- --- 106

001 END END --- --- 106

002 IL INTERLOCK --- --- 107

003 ILC INTERLOCK CLEAR --- --- 107

004 JMP JUMP --- --- 110

005 JME JUMP END --- --- 110

006 FAL FAILURE ALARM @FAL --- 481

007 FALS SEVERE FAILURE ALARM --- --- 484

008 STEP STEP DEFINE --- --- 445

009 SNXT STEP START --- --- 445

010 SFT SHIFT REGISTER --- --- 178

011 KEEP KEEP --- --- 98

012 CNTR REVERSIBLE COUNTER --- --- 125

013 DIFU DIFFERENTIATE UP --- --- 102

014 DIFD DIFFERENTIATE DOWN --- --- 102

015 TIMH HIGH-SPEED TIMER --- --- 118

016 WSFT WORD SHIFT @WSFT --- 185

017 ASFT ASYNCHRONOUS SHIFT REGISTER @ASFT --- 183

019 MCMP MULTIPLE COMPARE @MCMP --- 145

020 CMP UNSIGNED COMPARE --- --- 135

021 MOV MOVE @MOV --- 160

022 MVN MOVE NOT @MVN --- 161

023 BIN BCD-TO-BINARY @BIN --- 272

024 BCD BINARY-TO-BCD @BCD --- 275

025 ASL ARITHMETIC SHIFT LEFT @ASL --- 186

026 ASR ARITHMETIC SHIFT RIGHT @ASR --- 189

027 ROL ROTATE LEFT @ROL --- 192

028 ROR ROTATE RIGHT @ROR --- 195

029 COM COMPLEMENT @COM --- 303

034 ANDW LOGICAL AND @ANDW --- 290

035 ORW LOGICAL OR @ORW --- 293

036 XORW EXCLUSIVE OR @XORW --- 297

037 XNRW EXCLUSIVE NOR @XNRW --- 300

040 STC SET CARRY @STC --- 486

041 CLC CLEAR CARRY @CLC --- 487

045 TRSM TRACE MEMORY SAMPLING --- --- 477
66

List of Instructions by Function Code Section 2-4
058 BINL DOUBLE BCD-TO-DOUBLE BINARY @BINL --- 273

059 BCDL DOUBLE BINARY-TO-DOUBLE BCD @BCDL --- 276

060 CMPL DOUBLE UNSIGNED COMPARE --- --- 137

067 BCNT BIT COUNTER @BCNT --- 313

068 BCMP UNSIGNED BLOCK COMPARE @BCMP --- 149

069 APR ARITHMETIC PROCESS @APR --- 306

070 XFER BLOCK TRANSFER @XFER --- 169

071 BSET BLOCK SET @BSET --- 171

073 XCHG DATA EXCHANGE @XCHG --- 173

074 SLD ONE DIGIT SHIFT LEFT @SLD --- 204

075 SRD ONE DIGIT SHIFT RIGHT @SRD --- 205

080 DIST SINGLE WORD DISTRIBUTE @DIST --- 174

081 COLL DATA COLLECT @COLL --- 176

082 MOVB MOVE BIT @MOVB --- 165

083 MOVD MOVE DIGIT @MOVD --- 167

084 SFTR REVERSIBLE SHIFT REGISTER @SFTR --- 180

085 TCMP TABLE COMPARE @TCMP --- 147

086 ASC ASCII CONVERT @ASC --- 281

088 ZCP AREA RANGE COMPARE --- --- 155

091 SBS SUBROUTINE CALL @SBS --- 378

092 SBN SUBROUTINE ENTRY --- --- 387

093 RET SUBROUTINE RETURN --- --- 390

096 BPRG BLOCK PROGRAM BEGIN --- --- 491

097 IORF I/O REFRESH @IORF --- 462

099 MCRO MACRO @MCRO --- 383

114 CPS SIGNED BINARY COMPARE --- --- 140

115 CPSL DOUBLE SIGNED BINARY COMPARE --- --- 142

116 ZCPL DOUBLE AREA RANGE COMPARE --- --- 158

160 NEG 2’S COMPLEMENT @NEG --- 278

161 NEGL DOUBLE 2’S COMPLEMENT @NEGL --- 279

162 HEX ASCII TO HEX @HEX --- 285

182 MAX FIND MAXIMUM @MAX --- 357

183 MIN FIND MINIMUM @MIN --- 360

194 SCL SCALING @SCL --- 363

195 AVG AVERAGE --- --- 374

235 RXD RECEIVE @RXD --- 469

236 TXD TRANSMIT @TXD --- 464

237 STUP CHANGE SERIAL PORT SETUP @STUP --- 474

300 AND = AND EQUAL --- --- 129

300 LD = LOAD EQUAL --- --- 129

300 OR = OR EQUAL --- --- 129

301 AND =L AND DOUBLE EQUAL --- --- 129

301 LD =L LOAD DOUBLE EQUAL --- --- 129

301 OR =L OR DOUBLE EQUAL --- --- 129

302 AND =S AND SIGNED EQUAL --- --- 129

302 LD =S LOAD SIGNED EQUAL --- --- 129

302 OR =S OR SIGNED EQUAL --- --- 129

303 AND =SL AND DOUBLE SIGNED EQUAL --- --- 129

303 LD =SL LOAD DOUBLE SIGNED EQUAL --- --- 129

303 OR =SL OR DOUBLE SIGNED EQUAL --- --- 129

305 AND <> AND NOT EQUAL --- --- 129

305 LD <> LOAD NOT EQUAL --- --- 129

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Page
67

List of Instructions by Function Code Section 2-4
305 OR <> OR NOT EQUAL --- --- 129

306 AND <>L AND DOUBLE NOT EQUAL --- --- 129

306 LD <>L LOAD DOUBLE NOT EQUAL --- --- 129

306 OR <>L OR DOUBLE NOT EQUAL --- --- 129

307 AND <>S AND SIGNED NOT EQUAL --- --- 129

307 LD <>S LOAD SIGNED NOT EQUAL --- --- 129

307 OR <>S OR SIGNED NOT EQUAL --- --- 129

308 AND <>SL AND DOUBLE SIGNED NOT EQUAL --- --- 129

308 LD <>SL LOAD DOUBLE SIGNED NOT EQUAL --- --- 129

308 OR <>SL OR DOUBLE SIGNED NOT EQUAL --- --- 129

310 AND < AND LESS THAN --- --- 129

310 LD < LOAD LESS THAN --- --- 129

310 OR < OR LESS THAN --- --- 129

311 AND <L AND DOUBLE LESS THAN --- --- 129

311 LD <L LOAD DOUBLE LESS THAN --- --- 129

311 OR <L OR DOUBLE LESS THAN --- --- 129

312 AND <S AND SIGNED LESS THAN --- --- 129

312 LD <S LOAD SIGNED LESS THAN --- --- 129

312 OR <S OR SIGNED LESS THAN --- --- 129

313 AND <SL AND DOUBLE SIGNED LESS THAN --- --- 129

313 LD <SL LOAD DOUBLE SIGNED LESS THAN --- --- 129

313 OR <SL OR DOUBLE SIGNED LESS THAN --- --- 129

315 AND <= AND LESS THAN OR EQUAL --- --- 129

315 LD <= LOAD LESS THAN OR EQUAL --- --- 129

315 OR <= OR LESS THAN OR EQUAL --- --- 129

316 AND <=L AND DOUBLE LESS THAN OR EQUAL --- --- 129

316 LD <=L LOAD DOUBLE LESS THAN OR EQUAL --- --- 129

316 OR <=L OR DOUBLE LESS THAN OR EQUAL --- --- 129

317 AND <=S AND SIGNED LESS THAN OR EQUAL --- --- 129

317 LD <=S LOAD SIGNED LESS THAN OR EQUAL --- --- 129

317 OR <=S OR SIGNED LESS THAN OR EQUAL --- --- 129

318 AND <=SL AND DOUBLE SIGNED LESS THAN OR
EQUAL

--- --- 129

318 LD <=SL LOAD DOUBLE SIGNED LESS THAN OR
EQUAL

--- --- 129

318 OR <=SL OR DOUBLE SIGNED LESS THAN OR
EQUAL

--- --- 129

320 AND > AND GREATER THAN --- --- 129

320 LD > LOAD GREATER THAN --- --- 129

320 OR > OR GREATER THAN --- --- 129

321 AND >L AND DOUBLE GREATER THAN --- --- 129

321 LD >L LOAD DOUBLE GREATER THAN --- --- 129

321 OR >L OR DOUBLE GREATER THAN --- --- 129

322 AND >S AND SIGNED GREATER THAN --- --- 129

322 LD >S LOAD SIGNED GREATER THAN --- --- 129

322 OR >S OR SIGNED GREATER THAN --- --- 129

323 AND >SL AND DOUBLE SIGNED GREATER THAN --- --- 129

323 LD >SL LOAD DOUBLE SIGNED GREATER THAN --- --- 129

323 OR >SL OR DOUBLE SIGNED GREATER THAN --- --- 129

325 AND >= AND GREATER THAN OR EQUAL --- --- 129

325 LD >= LOAD GREATER THAN OR EQUAL --- --- 129

325 OR >= OR GREATER THAN OR EQUAL --- --- 129

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Page
68

List of Instructions by Function Code Section 2-4
326 AND >=L AND DOUBLE GREATER THAN OR
EQUAL

--- --- 129

326 LD >=L LOAD DOUBLE GREATER THAN OR
EQUAL

--- --- 129

326 OR >=L OR DOUBLE GREATER THAN OR EQUAL --- --- 129

327 AND >=S AND SIGNED GREATER THAN OR
EQUAL

--- --- 129

327 LD >=S LOAD SIGNED GREATER THAN OR
EQUAL

--- --- 129

327 OR >=S OR SIGNED GREATER THAN OR EQUAL --- --- 129

328 AND >=SL AND DOUBLE SIGNED GREATER THAN
OR EQUAL

--- --- 129

328 LD >=SL LOAD DOUBLE SIGNED GREATER THAN
OR EQUAL

--- --- 129

328 OR >=SL OR DOUBLE SIGNED GREATER THAN
OR EQUAL

--- --- 129

329 AND =F AND FLOATING EQUAL --- --- 353

329 LD =F LOAD FLOATING EQUAL --- --- 353

329 OR =F OR FLOATING EQUAL --- --- 353

330 AND <>F AND FLOATING NOT EQUAL --- --- 353

330 LD <>F LOAD FLOATING NOT EQUAL --- --- 353

330 OR <>F OR FLOATING NOT EQUAL --- --- 353

331 AND <F AND FLOATING LESS THAN --- --- 353

331 LD <F LOAD FLOATING LESS THAN --- --- 353

331 OR <F OR FLOATING LESS THAN --- --- 353

332 AND <=F AND FLOATING LESS THAN OR EQUAL --- --- 353

332 LD <=F LOAD FLOATING LESS THAN OR EQUAL --- --- 353

332 OR <=F OR FLOATING LESS THAN OR EQUAL --- --- 353

333 AND >F AND FLOATING GREATER THAN --- --- 353

333 LD >F LOAD FLOATING GREATER THAN --- --- 353

333 OR >F OR FLOATING GREATER THAN --- --- 353

334 AND >=F AND FLOATING GREATER THAN OR
EQUAL

--- --- 353

334 LD >=F LOAD FLOATING GREATER THAN OR
EQUAL

--- --- 353

334 OR >=F OR FLOATING GREATER THAN OR
EQUAL

--- --- 353

400 + SIGNED BINARY ADD WITHOUT CARRY @+ --- 223

401 +L DOUBLE SIGNED BINARY ADD
WITHOUT CARRY

@+L --- 225

402 +C SIGNED BINARY ADD WITH CARRY @+C --- 226

403 +CL DOUBLE SIGNED BINARY ADD WITH
CARRY

@+CL --- 228

404 +B BCD ADD WITHOUT CARRY @+B --- 233

405 +BL DOUBLE BCD ADD WITHOUT CARRY @+BL --- 231

406 +BC BCD ADD WITH CARRY @+BC --- 233

407 +BCL DOUBLE BCD ADD WITH CARRY @+BCL --- 234

410 – SIGNED BINARY SUBTRACT WITHOUT
CARRY

@– --- 236

411 –L DOUBLE SIGNED BINARY SUBTRACT
WITHOUT CARRY

@–L --- 237

412 –C SIGNED BINARY SUBTRACT WITH
CARRY

@–C --- 241

413 –CL DOUBLE SIGNED BINARY SUBTRACT
WITH CARRY

@–CL --- 243

414 –B BCD SUBTRACT WITHOUT CARRY @–B --- 245

415 –BL DOUBLE BCD SUBTRACT WITHOUT
CARRY

@–BL --- 247

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Page
69

List of Instructions by Function Code Section 2-4
416 –BC BCD SUBTRACT WITH CARRY @–BC --- 250

417 –BCL DOUBLE BCD SUBTRACT WITH CARRY @–BCL --- 251

420 * SIGNED BINARY MULTIPLY @* --- 253

421 *L DOUBLE SIGNED BINARY MULTIPLY @*L --- 255

422 *U UNSIGNED BINARY MULTIPLY @*U --- 256

423 *UL DOUBLE UNSIGNED BINARY MULTIPLY @*UL --- 258

424 *B BCD MULTIPLY @*B --- 259

425 *BL DOUBLE BCD MULTIPLY @*BL --- 261

430 / SIGNED BINARY DIVIDE @/ --- 262

431 /L DOUBLE SIGNED BINARY DIVIDE @/L --- 264

432 /U UNSIGNED BINARY DIVIDE @/U --- 265

433 /UL DOUBLE UNSIGNED BINARY DIVIDE @/UL --- 267

434 /B BCD DIVIDE @/B --- 268

435 /BL DOUBLE BCD DIVIDE @/BL --- 270

451 FIXL FLOATING TO 32-BIT @FIXL --- 323

453 FLTL 32-BIT TO FLOATING @FLTL --- 325

454 +F FLOATING-POINT ADD @+F --- 326

455 –F FLOATING-POINT SUBTRACT @–F --- 328

456 *F FLOATING-POINT MULTIPLY @*F --- 330

457 /F FLOATING-POINT DIVIDE @/F --- 331

458 RAD DEGREES TO RADIANS @RAD --- 350

459 DEG RADIANS-TO DEGREES @DEG --- 335

460 SIN SINE @SIN --- 336

461 COS COSINE @COS --- 338

462 TAN TANGENT @TAN --- 339

463 ASIN ARC SINE @ASIN --- 341

464 ACOS ARC COSINE @ACOS --- 343

465 ATAN ARC TANGENT @ATAN --- 344

466 SQRT SQUARE ROOT @SQRT --- 346

467 EXP EXPONENT @EXP --- 348

468 LOG LOGARITHM @LOG --- 350

486 SCL2 SCALING 2 @SCL2 --- 367

487 SCL3 SCALING 3 @SCL3 --- 371

498 MOVL DOUBLE MOVE @MOVL --- 162

499 MVNL DOUBLE MOVE NOT @MVNL --- 164

502 BCMP2 EXPANDED BLOCK COMPARE @BCMP2 --- 152

540 TMHH ONE-MS TIMER --- --- 120

570 ASLL DOUBLE SHIFT LEFT @ASLL --- 188

571 ASRL DOUBLE SHIFT RIGHT @ASRL --- 191

572 ROLL DOUBLE ROTATE LEFT @ROLL --- 193

573 RORL DOUBLE ROTATE RIGHT @RORL --- 196

574 RLNC ROTATE LEFT WITHOUT CARRY @RLNC --- 198

575 RRNC ROTATE RIGHT WITHOUT CARRY @RRNC --- 201

576 RLNL DOUBLE ROTATE LEFT WITHOUT
CARRY

@RLNL --- 199

577 RRNL DOUBLE ROTATE RIGHT WITHOUT
CARRY

@RRNL --- 202

590 ++ INCREMENT BINARY @++ --- 207

591 ++L DOUBLE INCREMENT BINARY @++L --- 209

592 – – DECREMENT BINARY @– – --- 210

593 – –L DOUBLE DECREMENT BINARY @– –L --- 212

594 ++B INCREMENT BCD @++B --- 214

595 ++BL DOUBLE INCREMENT BCD @++BL --- 216

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Page
70

List of Instructions by Function Code Section 2-4
596 – –B DECREMENT BCD @– –B --- 218

597 – –BL DOUBLE DECREMENT BCD @– –BL --- 220

610 ANDL DOUBLE LOGICAL AND @ANDL --- 292

611 ORWL DOUBLE LOGICAL OR @ORWL --- 295

612 XORL DOUBLE EXCLUSIVE OR @XORL --- 298

613 XNRL DOUBLE EXCLUSIVE NOR @XNRL --- 302

614 COML DOUBLE COMPLEMENT @COML --- 305

690 MSKS SET INTERRUPT MASK @MSKS --- 394

691 CLI CLEAR INTERRUPT @CLI --- 398

692 MSKR READ INTERRUPT MASK @MSKR --- 396

693 DI DISABLE INTERRUPTS @DI --- 399

694 EI ENABLE INTERRUPTS --- --- 400

801 BEND BLOCK PROGRAM END --- --- 491

802 IF CONDITIONAL BRANCHING BLOCK --- --- 494

802 IF CONDITIONAL BRANCHING BLOCK --- --- 494

802 IF NOT CONDITIONAL BRANCHING BLOCK NOT --- --- 494

803 ELSE ELSE --- --- 494

804 IEND IF END --- --- 494

840 PWR EXPONENTIAL POWER @PWR --- 351

880 INI MODE CONTROL @INI --- 405

881 PRV HIGH-SPEED COUNTER PV READ @PRV --- 411

882 CTBL COMPARISON TABLE LOAD @CTBL --- 415

885 SPED SPEED OUTPUT @SPED --- 422

886 PULS SET PULSES @PULS --- 428

887 PLS2 PULSE OUTPUT @PLS2 --- 433

888 ACC ACCELERATION CONTROL @ACC --- 438

980 STIM INTERVAL TIMER @STIM --- 401

981 AXIS VIRTUAL AXIS --- --- 314

982 JSB JUMP TO SUBROUTINE --- --- 390

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Page
71

List of Instructions by Function Code Section 2-4
72

SECTION 3
Instructions

This section describes each of the instructions that can be used in programming the FQM1. Instructions are described in
order of function, as classified in Section 2 Summary of Instructions.

3-1 Notation and Layout of Instruction Descriptions . 77
3-2 Sequence Input Instructions . 80

3-2-1 LOAD: LD . 80
3-2-2 LOAD NOT: LD NOT . 82
3-2-3 AND: AND. 83
3-2-4 AND NOT: AND NOT. 85
3-2-5 OR: OR . 86
3-2-6 OR NOT: OR NOT . 87
3-2-7 AND LOAD: AND LD. 89
3-2-8 OR LOAD: OR LD. 91
3-2-9 Differentiated Instructions . 93
3-2-10 Operation Timing for I/O Instructions . 94
3-2-11 TR Bits . 94

3-3 Sequence Output Instructions . 96
3-3-1 OUTPUT: OUT . 96
3-3-2 OUTPUT NOT: OUT NOT . 97
3-3-3 KEEP: KEEP(011) . 98
3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014). 102
3-3-5 SET and RESET: SET and RSET. 104

3-4 Sequence Control Instructions . 106
3-4-1 END: END(001) . 106
3-4-2 NO OPERATION: NOP(000). 106
3-4-3 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003) 107
3-4-4 JUMP and JUMP END: JMP(004) and JME(005). 110

3-5 Timer and Counter Instructions. 114
3-5-1 TIMER: TIM . 115
3-5-2 HIGH-SPEED TIMER: TIMH(015) . 118
3-5-3 ONE-MS TIMER: TMHH(540) . 120
3-5-4 COUNTER: CNT . 122
3-5-5 REVERSIBLE COUNTER: CNTR(012). 125

3-6 Comparison Instructions . 129
3-6-1 Input Comparison Instructions (300 to 328). 129
3-6-2 COMPARE: CMP(020) . 135
3-6-3 DOUBLE COMPARE: CMPL(060) . 137
3-6-4 SIGNED BINARY COMPARE: CPS(114) . 140
3-6-5 DOUBLE SIGNED BINARY COMPARE: CPSL(115) . 142
3-6-6 MULTIPLE COMPARE: MCMP(019) . 145
3-6-7 TABLE COMPARE: TCMP(085) . 147
3-6-8 BLOCK COMPARE: BCMP(068) . 149
3-6-9 EXPANDED BLOCK COMPARE: BCMP2(502). 152
3-6-10 AREA RANGE COMPARE: ZCP(088). 155
3-6-11 DOUBLE AREA RANGE COMPARE: ZCPL(116) . 158

3-7 Data Movement Instructions . 159
3-7-1 MOVE: MOV(021). 160
3-7-2 MOVE NOT: MVN(022) . 161
3-7-3 DOUBLE MOVE: MOVL(498) . 162
3-7-4 DOUBLE MOVE NOT: MVNL(499) . 164
3-7-5 MOVE BIT: MOVB(082) . 165
73

3-7-6 MOVE DIGIT: MOVD(083) . 167
3-7-7 BLOCK TRANSFER: XFER(070) . 169
3-7-8 BLOCK SET: BSET(071) . 171
3-7-9 DATA EXCHANGE: XCHG(073) . 173
3-7-10 SINGLE WORD DISTRIBUTE: DIST(080) . 174
3-7-11 DATA COLLECT: COLL(081) . 176

3-8 Data Shift Instructions . 178
3-8-1 SHIFT REGISTER: SFT(010) . 178
3-8-2 REVERSIBLE SHIFT REGISTER: SFTR(084) . 180
3-8-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017). 183
3-8-4 WORD SHIFT: WSFT(016). 185
3-8-5 ARITHMETIC SHIFT LEFT: ASL(025). 186
3-8-6 DOUBLE SHIFT LEFT: ASLL(570). 188
3-8-7 ARITHMETIC SHIFT RIGHT: ASR(026) . 189
3-8-8 DOUBLE SHIFT RIGHT: ASRL(571) . 191
3-8-9 ROTATE LEFT: ROL(027). 192
3-8-10 DOUBLE ROTATE LEFT: ROLL(572) . 193
3-8-11 ROTATE RIGHT: ROR(028) . 195
3-8-12 DOUBLE ROTATE RIGHT: RORL(573) . 196
3-8-13 ROTATE LEFT WITHOUT CARRY: RLNC(574) . 198
3-8-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576). 199
3-8-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575) . 201
3-8-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577) 202
3-8-17 ONE DIGIT SHIFT LEFT: SLD(074) . 204
3-8-18 ONE DIGIT SHIFT RIGHT: SRD(075). 205

3-9 Increment/Decrement Instructions . 207
3-9-1 INCREMENT BINARY: ++(590) . 207
3-9-2 DOUBLE INCREMENT BINARY: ++L(591) . 209
3-9-3 DECREMENT BINARY: – –(592). 210
3-9-4 DOUBLE DECREMENT BINARY: – –L(593). 212
3-9-5 INCREMENT BCD: ++B(594) . 214
3-9-6 DOUBLE INCREMENT BCD: ++BL(595) . 216
3-9-7 DECREMENT BCD: – –B(596) . 218
3-9-8 DOUBLE DECREMENT BCD: – –BL(597). 220

3-10 Symbol Math Instructions . 222
3-10-1 SIGNED BINARY ADD WITHOUT CARRY: +(400) . 223
3-10-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401) 225
3-10-3 SIGNED BINARY ADD WITH CARRY: +C(402). 226
3-10-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403) 228
3-10-5 BCD ADD WITHOUT CARRY: +B(404) . 230
3-10-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405) . 231
3-10-7 BCD ADD WITH CARRY: +BC(406) . 233
3-10-8 DOUBLE BCD ADD WITH CARRY: +BCL(407). 234
3-10-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: –(410) 236
3-10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411) 237
3-10-11 SIGNED BINARY SUBTRACT WITH CARRY: –C(412) . 241
3-10-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: –CL(413) 243
3-10-13 BCD SUBTRACT WITHOUT CARRY: –B(414) . 245
3-10-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –BL(415) 247
3-10-15 BCD SUBTRACT WITH CARRY: –BC(416). 250
3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417) . 251
3-10-17 SIGNED BINARY MULTIPLY: *(420). 253
3-10-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421) . 255
3-10-19 UNSIGNED BINARY MULTIPLY: *U(422) . 256
3-10-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423). 258
3-10-21 BCD MULTIPLY: *B(424). 259
3-10-22 DOUBLE BCD MULTIPLY: *BL(425). 261
74

3-10-23 SIGNED BINARY DIVIDE: /(430) . 262
3-10-24 DOUBLE SIGNED BINARY DIVIDE: /L(431) . 264
3-10-25 UNSIGNED BINARY DIVIDE: /U(432) . 265
3-10-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433). 267
3-10-27 BCD DIVIDE: /B(434). 268
3-10-28 DOUBLE BCD DIVIDE: /BL(435) . 270

3-11 Conversion Instructions. 271
3-11-1 BCD-TO-BINARY: BIN(023) . 272
3-11-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058) . 273
3-11-3 BINARY-TO-BCD: BCD(024). 275
3-11-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(059) . 276
3-11-5 2’S COMPLEMENT: NEG(160) . 278
3-11-6 DOUBLE 2’S COMPLEMENT: NEGL(161) . 279
3-11-7 ASCII CONVERT: ASC(086) . 281
3-11-8 ASCII TO HEX: HEX(162) . 285

3-12 Logic Instructions . 290
3-12-1 LOGICAL AND: ANDW(034) . 290
3-12-2 DOUBLE LOGICAL AND: ANDL(610) . 292
3-12-3 LOGICAL OR: ORW(035) . 293
3-12-4 DOUBLE LOGICAL OR: ORWL(611). 295
3-12-5 EXCLUSIVE OR: XORW(036). 297
3-12-6 DOUBLE EXCLUSIVE OR: XORL(612). 298
3-12-7 EXCLUSIVE NOR: XNRW(037) . 300
3-12-8 DOUBLE EXCLUSIVE NOR: XNRL(613) . 302
3-12-9 COMPLEMENT: COM(029) . 303
3-12-10 DOUBLE COMPLEMENT: COML(614) . 305

3-13 Special Math Instructions . 306
3-13-1 ARITHMETIC PROCESS: APR(069) . 306
3-13-2 BIT COUNTER: BCNT(067). 313
3-13-3 VIRTUAL AXIS: AXIS(981). 314

3-14 Floating-point Math Instructions . 317
3-14-1 FLOATING TO 32-BIT: FIXL(451) . 323
3-14-2 32-BIT TO FLOATING: FLTL(453) . 325
3-14-3 FLOATING-POINT ADD: +F(454). 326
3-14-4 FLOATING-POINT SUBTRACT: –F(455) . 328
3-14-5 FLOATING-POINT MULTIPLY: *F(456) . 330
3-14-6 FLOATING-POINT DIVIDE: /F(457) . 331
3-14-7 DEGREES TO RADIANS: RAD(458) . 333
3-14-8 RADIANS TO DEGREES: DEG(459) . 335
3-14-9 SINE: SIN(460) . 336
3-14-10 COSINE: COS(461) . 338
3-14-11 TANGENT: TAN(462) . 339
3-14-12 ARC SINE: ASIN(463) . 341
3-14-13 ARC COSINE: ACOS(464) . 343
3-14-14 ARC TANGENT: ATAN(465) . 344
3-14-15 SQUARE ROOT: SQRT(466) . 346
3-14-16 EXPONENT: EXP(467) . 348
3-14-17 LOGARITHM: LOG(468) . 350
3-14-18 EXPONENTIAL POWER: PWR(840) . 351
3-14-19 Single-precision Floating-point Comparison Instructions . 353

3-15 Table Data Processing Instructions . 356
3-15-1 FIND MAXIMUM: MAX(182) . 357
3-15-2 FIND MINIMUM: MIN(183) . 360

3-16 Data Control Instructions . 363
3-16-1 SCALING: SCL(194). 363
3-16-2 SCALING 2: SCL2(486) . 367
3-16-3 SCALING 3: SCL3(487) . 371
3-16-4 AVERAGE: AVG(195) . 374
75

3-17 Subroutines . 378
3-17-1 SUBROUTINE CALL: SBS(091) . 378
3-17-2 MACRO: MCRO(099) . 383
3-17-3 SUBROUTINE ENTRY: SBN(092). 387
3-17-4 SUBROUTINE RETURN: RET(093) . 390
3-17-5 JUMP SUBROUTINE: JSB(982). 390

3-18 Interrupt Control Instructions . 394
3-18-1 SET INTERRUPT MASK: MSKS(690) . 394
3-18-2 READ INTERRUPT MASK: MSKR(692) . 396
3-18-3 CLEAR INTERRUPT: CLI(691) . 398
3-18-4 DISABLE INTERRUPTS: DI(693) . 399
3-18-5 ENABLE INTERRUPTS: EI(694) . 400
3-18-6 INTERVAL TIMER: STIM(980) . 401

3-19 High-speed Counter/Pulse Output Instructions. 405
3-19-1 MODE CONTROL: INI(880) . 405
3-19-2 HIGH-SPEED COUNTER PV READ: PRV(881). 411
3-19-3 REGISTER COMPARISON TABLE: CTBL(882) . 415
3-19-4 SPEED OUTPUT: SPED(885) . 422
3-19-5 SET PULSES: PULS(886) . 428
3-19-6 PULSE OUTPUT: PLS2(887) . 433
3-19-7 ACCELERATION CONTROL: ACC(888) . 438

3-20 Step Instructions . 444
3-20-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009) . 445

3-21 I/O Refresh Instruction . 462
3-21-1 I/O REFRESH: IORF(097). 462

3-22 Serial Communications Instructions . 463
3-22-1 Serial Communications. 463
3-22-2 TRANSMIT: TXD(236) . 464
3-22-3 RECEIVE: RXD(235) . 469
3-22-4 CHANGE SERIAL PORT SETUP: STUP(237) . 474

3-23 Debugging Instructions . 477
3-23-1 Trace Memory Sampling: TRSM(045). 477

3-24 Failure Diagnosis Instructions. 481
3-24-1 FAILURE ALARM: FAL(006) . 481
3-24-2 SEVERE FAILURE ALARM: FALS(007) . 484

3-25 Other Instructions . 486
3-25-1 SET CARRY: STC(040) . 486
3-25-2 CLEAR CARRY: CLC(041) . 487

3-26 Block Programming Instructions . 488
3-26-1 Introduction. 488
3-26-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801) 491
3-26-3 Branching: IF (NOT)(802), ELSE(803), and IEND(804) . 494
76

Notation and Layout of Instruction Descriptions Section 3-1
3-1 Notation and Layout of Instruction Descriptions
Instructions are described in groups by function. Refer to 2-3 Alphabetical List
of Instructions by Mnemonic for a list of instructions by mnemonic that lists the
page number in this section for each instruction.

The description of each instruction is organized as described in the following
table.

Item Contents

Name and Mnemonic The heading of each section consists of the name of the instruction followed by the
mnemonic with the function code in parentheses. Example: MOVE BIT: MOVB(082)

Purpose The basic purpose of the instruction is described after the section heading.

Ladder Symbol and Operand
Names

Variations The variations that can be used to control execution of the instruction under special
conditions are given using the mnemonic form. Any variation that is not supported by
an instruction is given as “Not supported.”
• Executed Each Cycle for ON Condition: The instruction is executed as long as

it receives an ON execution condition.
• Executed Once for Upward Differentiation: The instruction is executed during

the next cycle only after the execution condition changes from OFF to ON.
• Executed Once for Downward Differentiation: The instruction is executed dur-

ing the next cycle only after the execution condition changes from ON to OFF.
• Always Executed: The instruction does not require an execution condition and

is executed each cycle.
• Creates ON Condition....: The instruction is executed each cycle to create an

execution condition for the next instruction.

Variations Executed Each Cycle for ON Condition MOVB(082)

Executed Once for Upward Differentia-
tion

@MOVB(082)

Executed Once for Downward Differenti-
ation

Not supported

Applicable Program Areas The program areas in which the instruction can be used are specified. “OK” indicates
the areas in which the instruction can be used.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

MOVB(082)

S

C

D

S: Source word or data

C: Control word

D: Destination word

The ladder symbol used to represent the instruction on the CX-Programmer is
shown, as in the example for the MOVE BIT instruction given below. The name of
each operand is also provided with the ladder symbol.
77

Notation and Layout of Instruction Descriptions Section 3-1
Constants Constants input for operands are given as listed below.

Operand Descriptions and Operand Specifications

• Operands Specifying Bit Strings (Normally Input as Hexadecimal):
Only the hexadecimal form is given for operands specifying bit strings,
e.g., only “#0000 to #FFFF” is specified as the S operand for the
MOV(021) instruction. On the CX-Programmer, however, bit strings can
be input in decimal form by using the & prefix.

• Operands Specifying Numeric Values (Normally Input as Decimal, Includ-
ing Jump Numbers):
Both the decimal and hexadecimal forms are given for operands specify-
ing numeric values, e.g., “#0000 to #FFFF” and “&0 to &65535” are given
for the N operand for the XFER(070) instruction.

Operands

Operand Specifications The memory areas addresses that can be used each operand are listed in a table
like the following one. The letters used in the column headings on the left are the
same as those used in the ladder symbol. “---” is used to indicate when an area can-
not be specific for an operand.

Area S C D

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A447
A448 to A649

A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Description The function of the instruction and the operands used in the instruction are
described.

Flags The flags table indicates the status of the condition flags immediately after execution
of the instruction. Any flags that are not listed are not affected by the instruction.
“OFF” indicates that a flag is turned OFF immediately after execution of the instruc-
tion regardless of the results of executing the instruction.

Name Label Operation

Error Flag ER ON if control data is within ranges.
OFF in all other cases.

Equals Flag = OFF

Negative Flag N OFF

Precautions Special precautions required in using the instruction are provided. Be sure to read
and follow these precautions.

Example An example of using the instruction with specific operands is provided to further
explain the function of the instruction.

Item Contents

15 8 07

C m n

Where necessary, the meaning of words and bits used in specific operands, such
as control words, is given.

Source bit: 00 to 0F
(0 to 15 decimal)

Destination bit: 00 to 0F
(0 to 15 decimal)
78

Notation and Layout of Instruction Descriptions Section 3-1
• Operands Indicating Control Numbers (Except for Jump Numbers):
The decimal form is given for control numbers, e.g., “0 to 255” is given for
the N operand for the SBS(091) instruction.

Examples

In the examples, constants are given using the CX-Programmer notation, e.g.,
operands specifying numeric values are given in decimal with an & prefix, as
shown in the following example.

The input methods for constants from the CX-Programmer are given in the fol-
lowing table.

Note When operands are input on the CX-Programmer, the input ranges will be dis-
played along with the appropriate prefixes.

Condition Flags With the CX-Programmer, the condition flags are registered in advance as
global symbols with “P_” in front of the symbol name.

Operand CX-Programmer

Operands specifying bit strings (normally input as
hexadecimal)

Input as decimal with an & prefix
or input as hexadecimal with an #
prefix. (See note.)Operands specifying numeric values (normally

input as decimal)

Operands specifying control numbers (except for
jump numbers)

Input as decimal with an # prefix.
(See note.)

XFER

&10

D00100

D00200

Flag Label used in this manual CX-Programmer label

Error Flag ER P_ER

Access Error
Flag

AER P_AER

Carry Flag CY P_CY

Greater Than
Flag

> P_GT

Equals Flag = P_EQ

Less Than Flag < P_LT

Negative Flag N P_N

Overflow Flag OF P_OF

Underflow Flag UF P_UF

Greater Than or
Equals Flag

>= P_GE

Not Equal Flag <> P_NE

Less Than or
Equals Flag

<= P_LE

Always ON Flag ON P_On

Always OFF
Flag

OFF P_Off
79

Sequence Input Instructions Section 3-2
3-2 Sequence Input Instructions
This section describes the sequence input instructions.

3-2-1 LOAD: LD
Purpose Indicates a logical start and creates an ON/OFF execution condition based on

the ON/OFF status of the specified operand bit.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Mnemonic Function code Page

LOAD LD --- 80

LOAD NOT LD NOT --- 82

AND AND --- 83

AND NOT AND NOT --- 85

OR OR --- 86

OR NOT OR NOT --- 87

AND LOAD AND LD --- 89

OR LOAD OR LD --- 91

Bus bar Starting point of block

Variations Restarts Logic and Creates ON Each Cycle
Operand Bit is ON

LD

Restarts Logic and Creates ON Once for
Upward Differentiation

@LD

Restarts Logic and Creates ON Once for
Downward Differentiation

%LD

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area LD operand bit

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A000.00 to A649.15

Timer Area T0000 to T0255

Counter Area C0000 to C0255

Task Flag TK0000

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area TR0 to TR15

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---
80

Sequence Input Instructions Section 3-2
Description LD is used for the first normally open bit from the bus bar or for the first nor-
mally open bit of a logic block. The specified bit in I/O memory is read. LD is
used in the following circumstances as an instruction for indicating a logical
start.

• When directly connecting to the bus bar.

• When logic blocks are connected by AND LD or OR LD, i.e., at the begin-
ning of a logic block.

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a programming error
will occur with the program check by the CX-Programmer.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus1. If they do not match, a program-
ming error will occur. For details, refer to 3-2-7 AND LOAD: AND LD and 3-2-
8 OR LOAD: OR LD.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for LD. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Example

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area LD operand bit

Instruction Operand

LD 0000.00

LD 0000.01

LD 0000.02

AND 0000.03

OR LD ---

AND LD ---

LD NOT 0000.04

AND 0000.05

0000.00 0000.01

0000.02 0000.03

0000.04

0001.00

OR LD
AND LD

OR LD
81

Sequence Input Instructions Section 3-2
3-2-2 LOAD NOT: LD NOT
Purpose Indicates a logical start and creates an ON/OFF execution condition based on

the reverse of the ON/OFF status of the specified operand bit.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description LD NOT is used for the first normally closed bit from the bus bar, or for the first
normally closed bit of a logic block.The specified bit in I/O memory is read and
reversed. LD NOT is used in the following circumstances as an instruction for
indicating a logical start.

OR LD ---

OUT 0001.00

Instruction Operand

Bus bar Starting point of block

Variations Restarts Logic and Creates ON Each Cycle Operand
Bit is OFF

LD NOT

Restarts Logic and Creates ON Once for Upward
Differentiation

@LD NOT

Restarts Logic and Creates ON Once for Downward
Differentiation

%LD NOT

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area LD NOT bit operand

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A000.00 to A649.15

Timer Area T0000 to T0255

Counter Area C0000 to C0255

Task Flag TK0000

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
82

Sequence Input Instructions Section 3-2
• When directly connecting to the bus bar.

• When logic blocks are connected by AND LD or OR LD. (Used at the
beginning of a logic block.)

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a program error will
occur with the program check by the CX-Programmer.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus1. If they do not match, a program-
ming error will occur.

Flags There are no flags affected by this instruction.

Example

3-2-3 AND: AND
Purpose Takes a logical AND of the status of the specified operand bit and the current

execution condition.

Ladder Symbol

Variations

Applicable Program Areas

Instruction Operand

LD 0000.00

LD 0000.01

LD 0000.02

AND 0000.03

OR LD ---

AND LD ---

LD NOT 0000.04

AND 0000.05

OR LD ---

OUT 0001.00

0000.00 0000.01

0000.02 0000.03

0000.04

0001.00

OR LD
AND LD

OR LD

Variations Creates ON Each Cycle AND Result is ON AND

Creates ON Once for Upward Differentiation @AND

Creates ON Once for Downward Differentiation %AND

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
83

Sequence Input Instructions Section 3-2
Operand Specifications

Description AND is used for a normally open bit connected in series. AND cannot be
directly connected to the bus bar, and cannot be used at the beginning of a
logic block.The specified bit in I/O memory is read.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for AND. If dif-
ferentiate up (@) is specified, the execution condition is turned ON for one
cycle only after the status of the operand bit goes from OFF to ON. If differen-
tiate down (%) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from ON to OFF.

Example

Area AND bit operand

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A000.00 to A649.15

Timer Area T0000 to T0255

Counter Area C0000 to C0255

Task Flag TK0000

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Instruction Operand

LD 0000.00

AND 0000.01

LD 0000.02

AND 0000.03

LD 0000.04

AND NOT 0000.05

OR LD ---

0000.00 0000.01 0000.030000.02 0001.00

0000.04 0000.05
84

Sequence Input Instructions Section 3-2
3-2-4 AND NOT: AND NOT
Purpose Reverses the status of the specified operand bit and takes a logical AND with

the current execution condition.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description AND NOT is used for a normally closed bit connected in series. AND NOT
cannot be directly connected to the bus bar, and cannot be used at the begin-
ning of a logic block. The specified bit in I/O memory is read.

Flags There are no flags affected by this instruction.

AND LD ---

OUT 0001.00

Instruction Operand

Variations Creates ON Each Cycle AND NOT Result is ON AND NOT

Creates ON Once for Upward Differentiation @AND NOT

Creates ON Once for Downward Differentiation %AND NOT

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area AND NOT bit operand

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A000.00 to A649.15

Timer Area T0000 to T0255

Counter Area C0000 to C0255

Task Flag TK0000

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
85

Sequence Input Instructions Section 3-2
Example

3-2-5 OR: OR
Purpose Takes a logical OR of the ON/OFF status of the specified operand bit and the

current execution condition.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Operand

LD 0000.00

AND 0000.01

LD 0000.02

AND 0000.03

LD 0000.04

AND NOT 0000.05

OR LD ---

AND LD ---

OUT 0001.00

0001.000000.00 0000.01 0000.02 0000.03

0000.04 0000.05

Bus bar

Variations Creates ON Each Cycle OR Result is ON OR

Creates ON Once for Upward Differentiation @OR

Creates ON Once for Downward Differentiation %OR

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area OR bit operand

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A000.00 to A649.15

Timer Area T0000 to T0255

Counter Area C0000 to C0255

Task Flag TK0000

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

Indirect DM addresses
in binary

86

Sequence Input Instructions Section 3-2
Description OR is used for a normally open bit connected in parallel. A normally open bit
is configured to form a logical OR with a logic block beginning with a LOAD or
LOAD NOT instruction (connected to the bus bar or at the beginning of the
logic block). The specified bit in I/O memory is read.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for OR. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Example

3-2-6 OR NOT: OR NOT
Purpose Reverses the status of the specified bit and takes a logical OR with the current

execution condition.

Ladder Symbol

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area OR bit operand

Instruction Operand

LD 0000.00

AND 0000.01

AND 0000.02

OR 0000.03

AND 0000.04

LD 0000.05

AND 0000.06

OR NOT 0000.07

AND LD ---

OUT 0001.00

0001.000000.060000.050000.04

0000.07

0000.020000.010000.00

0000.03

Bus bar
87

Sequence Input Instructions Section 3-2
Variations

Applicable Program Areas

Operand Specifications

Description OR NOT is used for a normally closed bit connected in parallel. A normally
closed bit is configured to form a logical OR with a logic block beginning with a
LOAD or LOAD NOT instruction (connected to the bus bar or at the beginning
of the logic block). The specified bit in I/O memory is read.

Flags There are no flags affected by this instruction.

Example

Variations Creates ON Each Cycle OR NOT Result is ON OR NOT

Creates ON Once for Upward Differentiation @OR NOT

Creates ON Once for Downward Differentiation %OR NOT

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area OR NOT bit operand

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A000.00 to A649.15

Timer Area T0000 to T0255

Counter Area C0000 to C0255

Task Flag TK0000

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Instruction Operand

LD 0000.00

AND 0000.01

AND 0000.02

OR 0000.03

AND 0000.04

0000.00 0000.01 0000.02 0000.04

0000.03

0000.05 0000.06

0000.07

0001.00
88

Sequence Input Instructions Section 3-2
3-2-7 AND LOAD: AND LD
Purpose Takes a logical AND between logic blocks.

Ladder Symbol

Variations

Applicable Program Areas

Description AND LD connects in series the logic block just before this instruction with
another logic block.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the
same rungs.

In the following diagram, the two logic blocks are indicated by dotted lines.
Studying this example shows that an ON execution condition will be produced
when either of the execution conditions in the left logic block is ON (i.e., when
either CIO 0000.00 or CIO 0000.01 is ON) and either of the execution condi-
tions in the right logic block is ON (i.e., when either CIO 0000.02 is ON or
CIO 0000.03 is OFF).

Coding

LD 0000.05

AND 0000.06

OR NOT 0000.07

AND LD ---

OUT 0001.00

Instruction Operand

Logic block Logic block

Variations Creates ON Each Cycle AND Result is ON AND LD

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Address Instruction Operand

000000 LD 0000.00

000001 OR 0000.01

000002 LD 0000.02

000003 OR NOT 0000.03

LD

LD

AND LD

Logic block A

Logic block B

Serial connection between logic block A and logic block B.

to

to

0000.00 0000.02

0000.01 0000.03

0001.00
89

Sequence Input Instructions Section 3-2
Second LD: Used for first bit of next block connected in series to previous
block.

Flags There are no flags affected by this instruction.

Precautions Three or more logic blocks can be connected in series using this instruction to
first connect two of the logic blocks and then to connect the next and subse-
quent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in series.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a program
error will occur.

Example

Coding Example (1)

Coding Example (2)

000004 AND LD ---

000005 OUT 0001.00

Address Instruction Operand

Instruction Operand

LD 0000.00

OR NOT 0000.01

LD NOT 0000.02

OR 0000.03

AND LD ---

LD 0000.04

OR 0000.05

AND LD ---

.

.
.
.

OUT 0001.00

Instruction Operand

LD 0000.00

OR NOT 0000.01

LD NOT 0000.02

OR 0000.03

LD 0000.04

OR 0000.05

.

.
.
.

AND LD ---

AND LD ---

.

.
.
.

OUT 0001.00

0000.00 0000.02 0000.04

0000.01 0000.050000.03

0001.00
90

Sequence Input Instructions Section 3-2
The AND LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of AND LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before AND LOAD is not more than eight. To use nine or more,
program using method (1). If there are nine or more with method (2), then a
program error will occur during the program check by the CX-Programmer.

3-2-8 OR LOAD: OR LD
Purpose Takes a logical OR between logic blocks.

Ladder Symbol

Variations

Applicable Program Areas

Description AND LD connects in parallel the logic block just before this instruction with
another logic block.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the
same rungs.

The following diagram requires an OR LOAD instruction between the top logic
block and the bottom logic block. An ON execution condition would be pro-
duced either when CIO 0000.00 is ON and CIO 0000.01 is OFF or when
CIO 0000.02 and CIO 0000.03 are both ON. The operation of and mnemonic
code for the OR LOAD instruction is exactly the same as those for a AND
LOAD instruction except that the current execution condition is ORed with the
last unused execution condition.

Logic block

Logic block

Variations Creates ON Each Cycle AND Result is ON OR LD

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

LD

LD

OR LD

to

to

Logic block A

Logic block B

Parallel connection between logic block A and logic block B.

0000.00 0000.01 0005.01

0000.02 0000.03
91

Sequence Input Instructions Section 3-2
Coding

Second LD: Used for first bit of next block connected in parallel to previous
block.

Flags There are no flags affected by this instruction.

Precautions Three or more logic blocks can be connected in parallel using this instruction
to first connect two of the logic blocks and then to connect the next and subse-
quent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in parallel.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a pro-
gramming error will occur.

Example

Coding Example (1)

Address Instruction Operand

000100 LD 0000.00

000101 AND NOT 0000.01

000102 LD 0000.02

000103 AND 0000.03

000104 OR LD ---

000105 OUT 0005.01

Instruction Operand

LD 0000.00

AND NOT 0000.01

LD NOT 0000.02

AND NOT 0000.03

OR LD ---

LD 0000.04

AND 0000.05

OR LD ---

.

.
.
.

OUT 0005.01

0000.00 0000.01 0005.01

0000.02 0000.03

0000.04 0000.05
92

Sequence Input Instructions Section 3-2
Coding Example (2)

The OR LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of OR LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before OR LOAD is not more than eight. To use nine or more, pro-
gram using method (1). If there are nine or more with method (2), then a pro-
gram error will occur during the program check by the Peripheral Device.

3-2-9 Differentiated Instructions
The LOAD, AND, and OR instructions have differentiated variations in addition
to their ordinary forms. The I/O timing for data handled by instructions differs
for ordinary and differentiated instructions.

Ordinary and differentiated instructions are executed using data input by pre-
vious I/O refresh processing, and the results are output with the next I/O pro-
cessing. Here “I/O refreshing” means the data exchanged between the
internal memory and the built-in I/O.

Instruction Operand

LD 0000.00

AND NOT 0000.01

LD NOT 0000.02

AND NOT 0000.03

LD 0000.04

AND 0000.05

.

.
.
.

OR LD ---

OR LD ---

.

.
.
.

OUT 0005.01

Instruction variation Mnemonic Function I/O refresh

Ordinary LD, AND, OR, LD
NOT, AND NOT,
OR NOT

The ON/OFF status of the specified bit is taken by the Mod-
ule with cyclic refreshing, and it is reflected in the next
instruction execution.

Cyclic refresh-
ing

OUT, OUT NOT After the instruction is executed, the ON/OFF status of the
specified bit is output with the next cyclic refreshing.

Differentiated up @LD, @AND,
@OR

The instruction is executed once when the specified bit turns
from OFF to ON and the ON state is held for one cycle.

Differentiated down %LD, %AND,
%OR

The instruction is executed once when the specified bit turns
from ON to OFF and the ON state is held for one cycle.
93

Sequence Input Instructions Section 3-2
3-2-10 Operation Timing for I/O Instructions
The following chart shows the differences in the timing of instruction opera-
tions for a program configured from LD and OUT.

3-2-11 TR Bits
TR bits are used to temporarily retain the ON/OFF status of execution condi-
tions in a program when programming in mnemonic code. They are not used
when programming directly in ladder program form because the processing is
automatically executed by the CX-Programmer. The following diagram shows
a simple application using two TR bits.

Using TR0 to TR15 TR0 to TR15 are used only with LOAD and OUTPUT instructions. There are
no restrictions on the order in which the bit addresses are used.

Sometimes it is possible to simplify a program by rewriting it so that TR bits
are not required. The following diagram shows one case in which a TR bit is
unnecessary and one in which a TR bit is required.

↑

!↓

A

A

A

B1

B2

B3

↓

↑

A

B1

B2

B3

Module
processing

Input
received

Input
received

Input
received

Instruction
execution

I/O
refreshing

Input
received

 000000 LD 0000.00
 000001 OUT TR0
 000002 AND 0000.01
 000003 OUT TR1
 000004 AND 0000.02
 000005 OUT 0001.00
 000006 LD TR1
 000007 AND 0000.03
 000008 OUT 0001.01
 000009 LD TR0
 000010 AND 0000.04
 000011 OUT 0001.02
 000012 LD TR0
 000013 AND NOT 0000.05
 000014 OUT 0001.03

0000.00 0000.01 0000.02

0000.03

0000.04

0000.05

0001.00

0001.01

0001.02

0001.03

Instruction OperandsAddress
94

Sequence Input Instructions Section 3-2
In instruction block (1), the ON/OFF status at point A is the same as for output
CIO 0001.00, so AND 0000.01 and OUT 0001.01 can be coded without
requiring a TR bit. In instruction block (2), the status of the branching point
and that of output CIO 0001.02 are not necessarily the same, so a TR bit
must be used. In this case, the number of steps in the program could be
reduced by using instruction block (1) in place of instruction block (2).

TR0 to TR15
Considerations

TR bits are used only for retaining (OUT TR0 to TR15) and restoring (LD TR0
to TR15) the ON/OFF status of branching points in programs with many out-
put branches. They are thus different from general bits, and cannot be used
with AND or OR instructions, or with instructions that include NOT.

(1)

(2)

0000.00

0000.02

0000.01

0000.03

0001.00

0001.01

0001.02

0001.03
95

Sequence Output Instructions Section 3-3
TR0 to TR15 output
Duplication

A TR bit address cannot be repeated within the same block in a program with
many output branches, as shown in the following diagram. It can, however, be
used again in a different block.

3-3 Sequence Output Instructions
This section describes the sequence output instructions.

3-3-1 OUTPUT: OUT
Purpose Outputs the result (execution condition) of the logical processing to the speci-

fied bit.

Ladder Symbol

Variations

Applicable Program Areas

0001.00

0001.01

0001.02

0001.03

0001.04

0000.02

0000.03

0000.04

0000.010000.00

0000.10 0000.11 0000.12

0000.13

0000.14

0000.15 0001.00

0001.01

0001.05

0001.06

0001.07

to

Instruction Mnemonic Function code Page

OUTPUT OUT --- 96

OUTPUT NOT OUT NOT --- 97

KEEP KEEP 011 98

DIFFERENTIATE UP DIFU 013 102

DIFFERENTIATE DOWN DIFD 014 102

SET SET --- 104

RESET RSET --- 104

Variations Executed Each Cycle for ON Condition OUT

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK
96

Sequence Output Instructions Section 3-3
Operand Specifications

Description The status of the execution condition (power flow) is written to the specified bit
in I/O memory.

Flags There are no flags affected by this instruction.

Example

3-3-2 OUTPUT NOT: OUT NOT
Purpose Reverses the result (execution condition) of the logical processing, and out-

puts it to the specified bit.

Ladder Symbol

Variations

Applicable Program Areas

Area OUT bit operand

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A448.00 to A649.15

Timer Area ---

Counter Area ---

TR Area TR0 to TR15

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Instruction Operand

LD 0000.00

OUT 0001.01

OUT NOT 0001.02

0000.00 0001.01

0001.02

Variations Executed Each Cycle for ON Condition OUT NOT

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK
97

Sequence Output Instructions Section 3-3
Operand Specifications

Note The TR Area is used only when programming with mnemonic code. It is not
used for ladder programs.

Description The status of the execution condition (power flow) is reversed and written to a
specified bit in I/O memory.

Flags There are no flags affected by this instruction.

Example

3-3-3 KEEP: KEEP(011)
Purpose Operates as a latching relay.

Ladder Symbol

Variations

Area OUT bit operand

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A448.00 to A649.15

Timer Area ---

Counter Area ---

TR Area TR0 to TR15

DM Area ---

Indirect DM addresses in
binary

Indirect DM addresses in
BCD

Constants ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Instruction Operand

LD 0000.00

OUT 0001.00

OUT NOT 0001.01

0000.00 0001.00

0001.01

KEEP(011)

B

S (Set)

R (Reset)

B: Bit

Variations Executed Each Cycle for ON Condition KEEP(011)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported
98

Sequence Output Instructions Section 3-3
Applicable Program Areas

Operand Specifications

Flags There are no flags affected by this instruction.

Precautions Do not use the input from an external device that has a normally closed con-
tact for the Reset input of KEEP(011). If the AC power supply is interrupted or
a momentary power interruption occurs, there will be a delay in shutting down
the FQM1’s internal DC power supply, which can cause the operand bit of
KEEP(011) to be reset.

Description When S turns ON, the designated bit will go ON and stay ON until reset,
regardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF. The relationship between execution conditions and
KEEP(011) bit status is shown below.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area B

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A448.00 to A649.15

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

A

A

KEEP(011)

Never
Input
device

Set

Reset
99

Sequence Output Instructions Section 3-3
If S and R are ON simultaneously, the reset input takes precedence.

The set input (S) cannot be received while R is ON.

KEEP(011) operates like the self-maintaining bit, but a self-maintaining bit
programmed with KEEP(011) requires one less instruction.

Self-maintaining bits programmed with KEEP(011) will maintain status even in
an interlock program section, unlike the self-maintaining bit programmed with-
out KEEP(011).

ON

OFF

ON

OFF

ON

OFFStatus of C

S execution condition

R execution condition

Set

Reset

Status of C

Set

Reset

Status of C

0000.02 0000.03 0005.00

0005.00

0000.02

0000.03

0005.00
100

Sequence Output Instructions Section 3-3
KEEP(011) can be used to create flip-flops as shown below.

Example When CIO 0000.00 goes ON in the following example, CIO 0005.00 is turned
ON. CIO 0005.00 remains ON until CIO 0000.01 goes ON.

When CIO 0000.02 goes ON and CIO 0000.03 goes OFF in the following
example, CIO 0001.00 is turned ON. CIO 0001.00 remains ON until
CIO 0000.04 or CIO 0000.05 goes ON.

Output bit C will maintain its
previous status in an interlock.

Output bit C will be turned
OFF in an interlock.

0000.00

0000.01

0000.02

0000.04

0000.05

0000.03

0005.00

0001.00
101

Sequence Output Instructions Section 3-3
Coding

Note KEEP(011) is input in different orders on in ladder and mnemonic form. In lad-
der form, input the set input, KEEP(011), and then the reset input. In mne-
monic form, input the set input, the reset input, and then KEEP(011).

3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014)
Purpose DIFU(013) turns the designated bit ON for one cycle when the execution con-

dition goes from OFF to ON (rising edge).
DIFD(014) turns the designated bit ON for one cycle when the execution con-
dition goes from ON to OFF (falling edge).

Ladder Symbols

Variations

Applicable Program Areas

Operand Specifications

Address Instruction Operand

000100 LD 0000.00

000101 LD 0000.01

000102 KEEP (011) 0005.00

000103 LD 0000.02

000104 AND NOT 0000.03

000105 LD 0000.04

000106 OR 0000.05

000107 KEEP (011) 0001.00

DIFU(013)

B

DIFD(014)

B

B: Bit

B: Bit

Variations Executed Each Cycle for ON Condition Not supported

Executed Once for Upward Differentiation DIFU(013)

Executed Once for Downward Differentiation Not supported

Variations Executed Each Cycle for ON Condition Not supported

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation DIFD(014)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area B

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A448.00 to A649.15

Timer Area ---

Counter Area ---

DM Area ---
102

Sequence Output Instructions Section 3-3
Description When the execution condition goes from OFF to ON, DIFU(013) turns B ON.
When DIFU(013) is reached in the next cycle, B is turned OFF.

When the execution condition goes from ON to OFF, DIFD(014) turns B ON.
When DIFD(014) is reached in the next cycle, B is turned OFF.

Flags No flags are affected by DIFU(013) and DIFD(014).

Precautions The operation of DIFU(013) or DIFD(014) depends on the execution condition
for the instruction itself as well as the execution condition for the program sec-
tion when it is programmed in an interlocked program section, a jumped pro-
gram section, or a subroutine. Refer to 3-4-3 INTERLOCK and INTERLOCK
CLEAR: IL(002) and ILC(003), 3-4-4 JUMP and JUMP END: JMP(004) and
JME(005), and 3-18 Interrupt Control Instructions for details.

Examples Operation of DIFU(013)

When CIO 0000.00 goes from OFF to ON in the following example,
CIO 0010.00 is turned ON for one cycle.

Operation of DIFD(014)

When CIO 0000.00 goes from ON to OFF in the following example,
CIO 0010.00 is turned ON for one cycle.

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area B

Status of B

1 cycle

Execution condition

Status of B
1 cycle

Execution condition

0010.00

0000.00

0000.00

0010.00

1 cycle 1 cycle
103

Sequence Output Instructions Section 3-3
3-3-5 SET and RESET: SET and RSET
Purpose SET turns the operand bit ON when the execution condition is ON.

RSET turns the operand bit OFF when the execution condition is ON.

Ladder Symbols

Variations

Applicable Program Areas

Operand Specifications

0010.00

0010.00

0000.00

0000.00

1 cycle 1 cycle

SET

B

RSET

B

B: Bit

B: Bit

Variations Executed Each Cycle for ON Condition SET

Executed Once for Upward Differentiation @SET

Executed Once for Downward Differentiation %SET

Variations Executed Each Cycle for ON Condition RSET

Executed Once for Upward Differentiation @RSET

Executed Once for Downward Differentiation %RSET

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 0000.00 to CIO 0255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A448.00 to A649.15

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---
104

Sequence Output Instructions Section 3-3
Description SET turns the operand bit ON when the execution condition is ON, and does
not affect the status of the operand bit when the execution condition is OFF.
Use RSET to turn OFF a bit that has been turned ON with SET.

RSET turns the operand bit OFF when the execution condition is ON, and
does not affect the status of the operand bit when the execution condition is
OFF. Use SET to turn ON a bit that has been turned OFF with RSET.

The set and reset inputs for a KEEP(011) instruction must be programmed
with the instruction, but the SET and RSET instructions can be programmed
completely independently. Furthermore, the same bit may be used as the
operand in any number of SET or RSET instructions.

Flags No flags are affected by SET and RSET.

Precautions SET and RSET cannot be used to set and reset timers and counters.

When SET or RSET is programmed between IL(002) and ILC(003) or
JMP(004) and JME(005), the status of the specified bit will not be changed if
the execution condition for IL(002) or JMP(004) is OFF.

Example Differences between OUT/OUT NOT and SET/RSET

The operation of SET differs from that of OUT because the OUT instruction
turns the operand bit OFF when its execution condition is OFF. Likewise,
RSET differs from OUT NOT because OUT NOT turns the operand bit ON
when its execution condition is OFF.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area B

Status of B

Execution condition
of SET

Execution condition
of RSET

Status of B

0000.00

0000.01

0000.02

0100.00

0100.00

0100.00

CIO 0100.00 is turned ON when
CIO 0000.01 goes ON; it remains
ON until CIO 0000.02 goes ON.

CIO 0100.00 is turned ON/OFF
when CIO 0000.00 goes ON/OFF.
105

Sequence Control Instructions Section 3-4
3-4 Sequence Control Instructions
This section describes the sequence control instructions.

3-4-1 END: END(001)
Purpose Indicates the end of a program.

Ladder Symbol

Variations

Applicable Program Areas

Description END(001) completes the execution of a program for that cycle. No instructions
written after END(001) will be executed.

Execution proceeds to the program with the next task number. When the pro-
gram being executed has the highest task number in the program, END(001)
marks the end of the overall main program.

Precautions Always place END(001) at the end of each program. A programming error will
occur if there is not an END(001) instruction in the program.

3-4-2 NO OPERATION: NOP(000)
Purpose This instruction has no function. (No processing is performed for NOP(000).)

Ladder Symbol There is no ladder symbol associated with NOP(000).

Variations

Applicable Program Areas

Instruction Mnemonic Function code Page

END END 001 106

NO OPERATION NOP 000 106

INTERLOCK/INTERLOCK CLEAR IL/ILC 002/003 107

JUMP/JUMP END JMP/JME 004/005 110

END(001)

Variations Executed Each Cycle for ON Condition END(001)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed Not allowed OK

END

I/O refreshing

Task 1 Program A

End of entire
user program

Variations Executed Each Cycle for ON Condition NOP(000)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
106

Sequence Control Instructions Section 3-4
Description No processing is performed for NOP(000), but this instruction can be used to
set aside lines in the program where instructions will be inserted later. When
the instructions are inserted later, there will be no change in program
addresses.

Flags No flags are affected by NOP(000).

Precautions NOP(000) can only be used with mnemonic displays, not with ladder pro-
grams.

3-4-3 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003)
Purpose Interlocks all outputs between IL(002) and ILC(003) when the execution con-

dition for IL(002) is OFF. IL(002) and ILC(003) are normally used in pairs.

Ladder Symbols

Variations

Applicable Program Areas

Description When the execution condition for IL(002) is OFF, the outputs for all instruc-
tions between IL(002) and ILC(003) are interlocked. When the execution con-
dition for IL(002) is ON, the instructions between IL(002) and ILC(003) are
executed normally.

The following table shows the treatment of various outputs in an interlocked
section between IL(002) and ILC(003).

Note Bits and words in all other instructions including SET, RSET, CNT,
CNTR(012), SFT, and KEEP(011) retain their previous status.

IL(002)

ILC(003)

Variations Interlocks when OFF/Does Not interlock when ON IL(002)

Variations Executed Each Cycle for ON Condition ILC(003)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK

Instruction Treatment

Bits specified in OUT or OUT NOT OFF

TIM, TIMH(015), and TMHH(540) Completion Flag OFF (reset)

PV Time set value (reset)

Bits/words specified in all other instructions (See note.) Retain previous status.

Execution
condition

Execution
condition ON

Execution
condition OFF

Interlocked section
of the program

Outputs
interlocked.

Normal
execution
107

Sequence Control Instructions Section 3-4
If there are bits which you want to keep ON in an interlocked program section,
set these bits to ON with SET just before IL(002).

It is often more efficient to switch a program section with IL(002) and
ILC(003). When several processes are controlled with the same execution
condition, it takes fewer program steps to put these processes between
IL(002) and ILC(003).

The following table shows the differences between IL(002)/ILC(003) and
JMP(004)/JME(005).

Flags

Precautions The cycle time is not shortened when a section of the program is interlocked
because the interlocked instructions are executed internally.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between IL(002) and ILC(003). Changes in the execution condition
for DIFU(013), DIFD(014), or a differentiated instruction are not recorded if the
DIFU(013) or DIFD(014) is in an interlocked section and the execution condi-
tion for the IL(002) is OFF.

Example: DIFU(013)
If the execution condition for DIFU(013) is OFF when an interlock is started
and is ON when the interlock is cleared, DIFU(013) will be executed when the
interlock is cleared.

ILC

Item Treatment in
IL(002)/ILC(003)

Treatment in
JMP(004)/JME(005)

Instruction execution Instructions other than OUT, OUT NOT,
and timer instructions are not executed.

No instructions are executed.

Output status in instructions Except for outputs in OUT, OUT NOT,
and timer instructions, all outputs retain
their previous status.

All outputs retain their previous status.

Bits in OUT, OUT NOT OFF All outputs retain their previous status.

Status of timer instructions Reset Operating timers (TIM, TIMH(015),
TMHH(540), only) continue timing
because the PVs are updated even
when the timer instruction is not being
executed.

Name Label Operation

Error Flag ER OFF

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged
108

Sequence Control Instructions Section 3-4
Timing Chart

In general, IL(002) and ILC(003) are used in pairs, although it is possible to
use more than one IL(002) with a single ILC(003) as shown in the following
diagram. If IL(002) and ILC(003) are not paired, an error message will appear
when the program check is performed but the program will be executed prop-
erly.

IL(002) and ILC(003) cannot be nested.

Examples When CIO 0000.00 is OFF in the following example, all outputs between
IL(002) and ILC(003) are interlocked. When CIO 0000.00 is ON in the follow-

IL

ILC

DIFU

0010.00

0000.00

0000.01

1. Assume that CIO 0000.01, the input condition for DIFU, is OFF when CIO 0000.00 turns OFF to start the interlock.
2. Assume that CIO 0000.01, the input condition for DIFU, turns ON while CIO 0000.00 is OFF.
3. When CIO 0000.00 turns ON, the interlock will be cleared and DIFU will be executed because CIO 0000.01 is ON.

Execution
condition

Program section

a b A B

OFF ON Interlocked Interlocked

OFF OFF Interlocked Interlocked

ON OFF Not interlocked Interlocked

ON ON Not interlocked Not interlocked

DIFU executed.

ON
CIO 0000.00

CIO 0000.01

CIO 0010.00

OFF

OFF

ON
ON (Differentiated condition for DIFU met.)

OFF

ON

OFF

Not interlocked Interlocked Not interlocked

One cycle
109

Sequence Control Instructions Section 3-4
ing example, the instructions between IL(002) and ILC(003) are executed nor-
mally.

3-4-4 JUMP and JUMP END: JMP(004) and JME(005)
Purpose When the execution condition for JMP(004) is OFF, program execution jumps

directly to the first JME(005) in the program with the same jump number.
JMP(004) and JME(005) are used in pairs.

Ladder Symbols

Variations

Applicable Program Areas

CIO 0000.00
ON

CIO 0000.00
OFF

OFF

OFF

0000.00

0000.01

0000.02

0002.00

0003.00

0000.03

Reset

Retained

Retained

Normal
execution

Outputs
interlocked

JMP(004)

N

JME(005)

N

N: Jump number

N: Jump number

Variations Jumps when OFF/Does Not Jump when ON JMP(004)

Variations Executed Each Cycle for ON Condition JME(005)

Block program areas Step program areas Subroutines Interrupt tasks

OK Not allowed OK OK
110

Sequence Control Instructions Section 3-4
Operands N: Jump Number

The jump number must be 0000 to 00FF (&0 to &255 decimal).

Operand Specifications

Description When the execution condition for JMP(004) is ON, no jump is made and the
program is executed consecutively as written.

When the execution condition for JMP(004) is OFF, program execution jumps
directly to the first JME(005) in the program with the same jump number. The
instructions between JMP(004) and JME(005) are not executed, so the status
of outputs between JMP(004) and JME(005) is maintained. In block programs,
the instructions between JMP(004) and JME(005) are skipped regardless of
the status of the execution condition.

Because all of instructions between JMP(004) and JME(005) are skipped
when the execution condition for JMP(004) is OFF, the cycle time is reduced
by the total execution time of the skipped instructions.

Area N

JMP(004) JME(005)

CIO Area CIO 0000 to CIO 0255 ---

Work Area W000 to W255 ---

Auxiliary Bit Area A000 to A649 ---

Timer Area T0000 to T0255 ---

Counter Area C0000 to C0255 ---

DM Area D00000 to D32767 ---

Indirect DM addresses in
binary

@ D00000 to @ D32767 ---

Indirect DM addresses in
BCD

*D00000 to *D32767 ---

Constants #0000 to #00FF (binary) or
&0 to &255

#0000 to #00FF (binary) or
&0 to &255

Index Registers --- ---

Indirect addressing using
Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –
2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Instructions in this section are not
executed and output status is
maintained. The instruction execution
time for these instructions is eliminated.

Instructions
jumped

Execution condition

Instructions
executed
111

Sequence Control Instructions Section 3-4
Flags (JMP)

Precautions All of the outputs (bits and words) in jumped instructions retain their previous
status. Operating timers (TIM, TIMH(015), and TMHH(540)) continue timing
because the PVs are updated even when the timer instruction is not being
executed.

When there are two or more JME(005) instructions with the same jump num-
ber, only the instruction with the lower address will be valid. The JME(005)
with the higher program address will be ignored.

When JME(005) precedes JMP(004) in the program, the instructions between
JME(005) and JMP(004) will be executed repeatedly as long as the execution
condition for JMP(004) is OFF. A Cycle Time Too Long error will occur if the
execution condition is not turned ON or END(001) is not executed within the
maximum cycle time.

In block programs, the instructions between JMP(004) and JME(005) are
always skipped regardless of the status of the execution condition for
JMP(004).

JMP(004) and JME(005) pairs must be in the same task because jumps
between tasks are not allowed. An error will occur if a JME(005) instruction is
not programmed in the same task as its corresponding JMP(004) instruction.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between JMP(004) and JME(005). When DIFU(013), DIFD(014), or
a differentiated instruction is executed in an jumped section immediately after
the execution condition for the JMP(004) has gone ON, the execution condi-
tion for the DIFU(013), DIFD(014), or differentiated instruction will be com-
pared to the execution condition that existed before the jump became effective
(i.e., before the execution condition for JMP(004) went OFF).

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0000 to 00FF.

ON if there is a JMP(004) in the program without a
JME(005) with the same jump number.
ON if there is a JMP(004) in the task without a JME(005)
with the same jump number in the same task.
OFF in all other cases.

Program section A is executed
repeatedly as long as
execution condition a is OFF.

JMP &1

JME &1
to

Block program section
112

Sequence Control Instructions Section 3-4
JMP(004) Specifications

Examples Basic Operation

When CIO 0000.00 is OFF in the following example, the instructions between
JMP(004) and JME(005) are not executed and the outputs maintain their pre-
vious status.
When CIO 0000.00 is ON in the following example, the instructions between
JMP(004) and JME(005) are executed normally.

Item JMP-JME

Execution condition for jumping OFF

Number of JMP instructions 256 max.

Instruction processing when jumping Not executed

Execution time when jumping 0

Outputs while jumping Retains previous status

PV of active timer, while jumping Continues timing

Processing in block program area Jumps unconditionally

&1

CIO 0000.00
ON

CIO 0000.00
OFF&1

0000.00

Normal
execution

Instructions
not executed.
(Outputs re-
main un-
changed.)
113

Timer and Counter Instructions Section 3-5
3-5 Timer and Counter Instructions
This section describes instructions used to define and handle timers and
counters.

Refresh Methods for Timer/Counter PV

■ Overview

The timer and counter instructions all use BCD data and all set values for
them are input using BCD.

Basic Timer Specifications
The following table shows the basic specifications of the timers.

Note 1. TIM PVs are refreshed at execution, at the end of program execution each
cycle, or every 80 ms by interrupt if the cycle time exceeds 80 ms.

2. TIMH(015) PVs are refreshed at execution, at the end of program execu-
tion each cycle, and every 10 ms by interrupt.

Timer Operation
The following table shows the effects of operating and programming condi-
tions on the operation of the timers.

Instruction Mnemonic Function code Page

TIMER TIM --- 115

HIGH-SPEED TIMER TIMH 015 118

ONE-MS TIMER TMHH 540 120

COUNTER CNT --- 122

REVERSIBLE COUNTER CNTR 012 125

Item TIM TIMH(015) TMHH(540)

Timing method Decrementing Decrementing Decrementing

Timing units 0.1 s 0.01 s 0.001 s

Max. SV 999.9 s 99.99 s 9.999 s

Outputs/instruction 1 1 1

Timer numbers Used Used Used

Comp. flag refreshing At execution At execution By interrupt
every 1 ms

Timer PV refreshing See note 1. See note 2. Every 1 ms

Value after
reset

Comp. flags OFF OFF OFF

PVs SV SV SV

Item TIM TIMH(015) TMHH(540)

Operating mode change PV = 0
Completion Flag = OFF

Power interrupt/reset PV = 0
Completion Flag = OFF

Operation in jumped pro-
gram section
(JMP(004)-JME(005))

Operating timers continue timing.

Operation in interlocked pro-
gram section
(IL(002)-ILC(003))

PV = SV
Completion Flag = OFF

Forced set Comp. flags ON

PVs Set to 0.
114

Timer and Counter Instructions Section 3-5
3-5-1 TIMER: TIM
Purpose TIM operates a decrementing timer with units of 0.1-s. The setting range for

the set value (SV) is 0 to 999.9 s. The timer accuracy is −0.01 to 0 s.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 and 0255 (decimal).

S: Set Value

The set value must be between #0000 and #9999 (BCD).
(If the set value is set to #0000, the Completion Flag will be turned ON when
TIM is executed.)

Operand Specifications

Forced reset Comp. flags OFF

PVs Reset to SV.

Item TIM TIMH(015) TMHH(540)

Symbol Operands

N: 0 to 0255 (decimal)

S: #0000 to #9999 (BCD)TIM

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TIM

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

Area N S

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A000 to A649

Timer Area 0 to 0255 (decimal) T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants --- #0000 to #9999 (BCD)
“&” cannot be used.

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
115

Timer and Counter Instructions Section 3-5
Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIM starts decrementing the PV.
The PV will continue timing down as long as the timer input remains ON and
the timer’s Completion Flag will be turned ON when the PV reaches 0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

The following timing chart shows the behavior of the timer’s PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

Flags

Precautions Timer numbers are shared by the TIM, TIMH(015), and TMHH(540) instruc-
tions. Two timers can share the same timer number only if they are not exe-
cuted at the same time. A duplication error will occur when the program is
checked, but the timers will operate normally as long as they are not executed
at the same time. Timers which share the same timer number will not operate
properly if they are executed simultaneously.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Note The PV will be set to the SV when TIM is executed.

SV

Timer input

Timer PV

Completion
Flag

SV

Timer input

Timer PV

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if S does not contain BCD data.

OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode
or vice versa.

0000 OFF

Power supply interrupted and reset 0000 OFF

Operation in interlocked program sec-
tion
(IL(002)–ILC(003))

Reset to SV. OFF

Operation in jumped program section
(JMP(004)–JME(005))

PV continues decre-
menting.

Retains previous sta-
tus.
116

Timer and Counter Instructions Section 3-5
When TIM is in a program section between IL(002) and ILC(003) and the pro-
gram section is interlocked, the PV will be reset to the SV and the Completion
Flag will be turned OFF.

When an operating TIM timer is in a jumped program section (JMP(004) and
JME(005)), the timer’s PV will continue timing. The jumped TIM instruction will
not be executed, but the PV will be refreshed each cycle after all tasks have
been executed.

When a TIM timer is forced set, its Completion Flag will be turned ON and its
PV will be set to 0000. When a TIM timer is forced reset, its Completion Flag
will be turned OFF and its PV will be reset to the SV.

The timer’s Completion Flag is refreshed only when TIM is executed, so a
delay of up to one cycle may be required for the Completion Flag to be turned
ON after the timer times out.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TIM ↔ TIMH(015) or TIM ↔ TMHH(540)), be
sure to reset the Completion Flag. The timer will not operate properly unless
the Completion Flag is reset.

A TIM instruction’s PV and Completion Flag are refreshed in the following
ways.

Example When timer input CIO 0000.00 goes from OFF to ON in the following example,
the timer PV will begin counting down from the SV. Timer Completion Flag
T0000 will be turned ON when the PV reaches 0000.
When CIO 0000.00 goes OFF, the timer PV will be reset to the SV and the
Completion Flag will be turned OFF.

Execution of TIM The PV is updated every time that TIM is executed.
The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

CIO 0000.00

T0000

T0000

0000.00

Timer input

Timer PV

Timer
Completion
Flag
117

Timer and Counter Instructions Section 3-5
3-5-2 HIGH-SPEED TIMER: TIMH(015)
Purpose TIMH(015) operates a decrementing timer with units of 10-ms. The setting

range for the set value (SV) is 0 to 99.99 s for TIMH(015). The timer accuracy
is −0.01 to 0 s.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 and 0255 (decimal).

S: Set Value

The set value must be between #0000 and #9999 (BCD).

Operand Specifications

Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIMH(015) starts decrementing
the PV. The PV will continue timing down as long as the timer input remains
ON and the timer’s Completion Flag will be turned ON when the PV reaches
0000.

Symbol Operands

N: 0 to 255 (decimal)
S: #0000 to #9999 (BCD)TIMH(015)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TIMH(015)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

Area N S

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A000 to A649

Timer Area 0 to 255 (decimal) T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants --- #0000 to #9999 (BCD)
“&” cannot be used.

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
118

Timer and Counter Instructions Section 3-5
The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

The following timing chart shows the behavior of the timer’s PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

Flags

Precautions Timer numbers are shared by the TIM, TIMH(015), and TMHH(540) instruc-
tions. Two timers can share the same timer number only if they are not exe-
cuted at the same time. A duplication error will occur when the program is
checked, but the timers will operate normally as long as they are not executed
at the same time. Timers which share the same timer number will not operate
properly if they are executed simultaneously.

The Completion Flags for TIMH(015) timers will be updated when the instruc-
tion is executed.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Note The PV will be set to the SV when TIMH(015) is executed.

When an operating TIMH(015) timer is in a jumped program section
(JMP(004), and JME(005)), the timer’s PV will continue timing. (The jumped
TIMH(015) instruction will not be executed, but the PV will be refreshed every
10 ms and each cycle after all tasks have been executed.)

SV

Timer input

Timer PV

Completion
Flag

SV

Timer input

Timer PV

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if S does not contain BCD data.

OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode or
vice versa.

0000 OFF

Power supply interrupted and reset 0000 OFF

Operation in interlocked program section
(IL(002)–ILC(003))

Reset to SV. OFF

Operation in jumped program section
(JMP(004)–JME(005))

PV continues
decrementing.

Retains previous status.
119

Timer and Counter Instructions Section 3-5
When TIMH(015)) is in a program section between IL(002) and ILC(003) and
the program section is interlocked, the PV will be reset to the SV and the
Completion Flag will be turned OFF.

When a TIMH(015) timer is forced set, its Completion Flag will be turned ON
and its PV will be set to 0000. When a TIMH(015) timer is forced reset, its
Completion Flag will be turned OFF and its PV will be reset to the SV.

The timer’s Completion Flag is refreshed only when TIMH(015) is executed,
so a delay of up to one cycle may be required for the Completion Flag to be
turned ON after the timer times out.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TIMH(015) ↔ TIM or TIMH(015) ↔
TMHH(540)), be sure to reset the Completion Flag. The timer will not operate
properly unless the Completion Flag is reset.

A TIMH(015) instruction’s PV and Completion Flag are refreshed in the follow-
ing ways.

Example When timer input CIO 0000.00 goes from OFF to ON in the following example,
the timer PV will begin counting down from the SV. The Timer Completion
Flag, T0000, will be turned ON when the PV reaches 0000.
When CIO 0000.00 goes OFF, the timer PV will be reset to the SV and the
Completion Flag will be turned OFF.

3-5-3 ONE-MS TIMER: TMHH(540)
Purpose TMHH(540) operates a decrementing timer with units of 1-ms. The setting

range for the set value (SV) is 0 to 9.999 s for TMHH(540). The timer accuracy
is –0.001 to 0 s.

Ladder Symbol

Variations

Applicable Program Areas

Execution of
TIMH(015)

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

10-ms interval
refreshing

The timer’s PV is updated every 10 ms.

CIO 0000.00

T0000

T0000

#0100
(1.00 s)

0000.00
Timer input

Timer PV

Timer Completion
Flag

Symbol Operands

N: 0 to 15 (decimal)
S: #0000 to #9999 (BCD)TMHH(540)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TMHH(540)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
120

Timer and Counter Instructions Section 3-5
Operands N: Timer Number

The timer number must be between 0 and 15 (decimal).

S: Set Value

The set value must be between #0000 and #9999 (BCD).

Operand Specifications

Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TMHH(540) starts decrementing
the PV. The PV will continue timing down as long as the timer input remains
ON and the timer’s Completion Flag will be turned ON when the PV reaches
0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

Flags

Precautions Timer numbers are shared by the TIM, TIMH(015), and TMHH(540) instruc-
tions. Two timers can share the same timer number only if they are not exe-
cuted at the same time. A duplication error will occur when the program is
checked, but the timers will operate normally as long as they are not executed
at the same time. Timers which share the same timer number will not operate
properly if they are executed simultaneously.

The Completion Flag is updated only when TMHH(540) is executed. The
Completion Flag can thus be delayed by up to one cycle time from the actual
set value.

Area N S

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A000 to A649

Timer Area 0 to 15 (decimal) T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants --- #0000 to #9999 (BCD)
“&” cannot be used.

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.

ON if S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged
121

Timer and Counter Instructions Section 3-5
Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Note The PV will be set to the SV when TMHH(540) is executed.

When an operating TMHH(540) timer is in a jumped program section
(JMP(004), JME(005)), the timer’s PV will continue timing. (The jumped
TMHH(540) instruction will not be executed, but the PV will be refreshed every
1 ms.)

When TMHH(540) is in a program section between IL(002) and ILC(003) and
the program section is interlocked, the PV will be reset to the SV and the
Completion Flag will be turned OFF.

When a TMHH(540) timer is forced set, its Completion Flag will be turned ON
and its PV will be set to 0000. When a TMHH(540) timer is forced reset, its
Completion Flag will be turned OFF and its PV will be reset to the SV.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TMHH(540) ↔ TIM or TMHH(540) ↔
TIMH(015)), be sure to reset the Completion Flag. The timer will not operate
properly unless the Completion Flag is reset.

A TMHH(540) instruction’s PV and Completion Flag are refreshed as shown
in the following table.

3-5-4 COUNTER: CNT
Purpose CNT operates a decrementing counter. The setting range 0 to 9,999 for CNT.

Ladder Symbol

Variations

Applicable Program Areas

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode or
vice versa.

0000 OFF

Power supply interrupted and reset 0000 OFF

Operation in interlocked program section
(IL(002)–ILC(003))

Reset to SV. OFF

Operation in jumped program section
(JMP(004)–JME(005))

PV continues
decrement-
ing.

Retains previous status.

Execution of TMHH(540) The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

1-ms interval refreshing The timer’s PV is updated every 1 ms.

CNT

N

S

Count input

Reset input

N: Counter number

S: Set value

Variations Executed Each Cycle for ON Condition CNT

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK
122

Timer and Counter Instructions Section 3-5
Operands N: Counter Number
The counter number must be between 0 and 255 (decimal).

S: Set Value
The set value must be between #0000 and #9999 (BCD).

Operand Specifications

Description The counter PV is decremented by 1 every time that the count input goes from
OFF to ON. The Completion Flag is turned ON when the PV reaches 0.

Once the Completion Flag is turned ON, reset the counter by turning the reset
input ON. Otherwise, the counter cannot be restarted.

The counter is reset and the count input is ignored when the reset input is ON.
(When a counter is reset, its PV is reset to the SV and the Completion Flag is
turned OFF.)

Flags

Area N S

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit
Area

--- A000 to A649

Timer Area --- T0000 to T0255

Counter Area 0 to 255 (decimal) C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM
addresses in
binary

--- @ D00000 to @ D32767

Indirect DM
addresses in
BCD

--- *D00000 to *D32767

Constants --- #0000 to #9999 (BCD)
“&” cannot be used.

Index Registers --- ---

Indirect address-
ing using Index
Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

SV

Count input

Counter PV

Reset input

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a counter.

ON if S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged
123

Timer and Counter Instructions Section 3-5
Precautions Counter numbers are shared by the CNT, and CNTR(012) instructions. Two
counters can share the same timer number only if they are not executed at the
same time. A duplication error will occur when the program is checked, but the
counters will operate normally as long as they are not executed at the same
time. Counters which share the same counter number will not operate prop-
erly if they are executed simultaneously.

A counter’s PV is refreshed when the count input goes from OFF to ON and
the Completion Flag is refreshed each time that CNT is executed. The Com-
pletion Flag is turned ON if the PV is 0 and it is turned OFF if the PV is not 0.

When a CNT counter is forced set, its Completion Flag will be turned ON and
its PV will be reset to 0000. When a CNT counter is forced reset, its Comple-
tion Flag will be turned OFF and its PV will be set to the SV.

Be sure to reset the counter by turning the reset input from
OFF → ON → OFF before beginning counting with the count input, as shown
in the following diagram. The count input will not be received if the reset input
is ON.

The reset input will take precedence and the counter will be reset if the reset
input and count input are both ON at the same time. (The PV will be reset to
the SV and the Completion Flag will be turned OFF.)

Note If online editing is used to add a counter, the counter must be reset before it
will work properly. If the counter is not reset, the previous value will be used as
the counter’s present value (PV), and the counter may not operate properly
after it is written.

Counter PVs are not retained through a power interruption.

SV

Reset input

Counter PV

Count input

Ready to start
counting

Completion
Flag

SV

Reset input

Counter PV

Count input

Completion
Flag

Count input
can be re-
ceived.

Reset input
takes pre-
cedence.

Count input
can be re-
ceived.
124

Timer and Counter Instructions Section 3-5
3-5-5 REVERSIBLE COUNTER: CNTR(012)
Purpose CNTR(012) operates a reversible counter.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Counter Number

The counter number must be between 0 and 255 (decimal).

S: Set Value

The set value must be between #0000 and #9999 (BCD).

Operand Specifications

CNTR(012)

N

S

Increment input

Reset input

Decrement input

N: Counter number

S: Set value

Variations Executed Each Cycle for ON Condition CNTR(012)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area N S

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit
Area

--- A000 to A649

Timer Area --- T0000 to T0255

Counter Area 0 to 255 (decimal) C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM
addresses in
binary

--- @ D00000 to @ D32767

Indirect DM
addresses in
BCD

--- *D00000 to *D32767

Constants --- #0000 to #9999 (BCD)
“&” cannot be used.

Index Registers --- ---

Indirect address-
ing using Index
Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
125

Timer and Counter Instructions Section 3-5
Description The counter PV is incremented by 1 every time that the increment input goes
from OFF to ON and it is decremented by 1 every time that the decrement
input goes from OFF to ON. The PV can fluctuate between 0 and the SV.

When incrementing, the Completion Flag will be turned ON when the PV is
incremented from the SV back to 0 and it will be turned OFF again when the
PV is incremented from 0 to 1.

When decrementing, the Completion Flag will be turned ON when the PV is
decremented from 0 up to the SV and it will be turned OFF again when the PV
is decremented from the SV to SV–1.

Flags

Precautions Counter numbers are shared by the CNT and CNTR(012) instructions.Two
counters can share the same timer number only if they are not executed at the
same time. A duplication error will occur when the program is checked, but the
counters will operate normally as long as they are not executed at the same
time. Counters which share the same counter number will not operate prop-
erly if they are executed simultaneously.

The PV will not be changed if the increment and decrement inputs both go
from OFF to ON at the same time. When the reset input is ON, the PV will be
reset to 0 and both count inputs will be ignored.

The Completion Flag will be ON only when the PV has been incremented
from the SV to 0 or decremented from 0 to the SV; it will be OFF in all other
cases.

When inputting the CNTR(012) instruction with mnemonics, first enter the
increment input (II), then the decrement input (DI), the reset input (R), and
finally the CNTR(012) instruction. When entering with the ladder diagrams,

Increment input

Counter PV

Decrement input

SV

+1

Counter PV

Completion Flag

SV −1
Counter PV

Completion Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a counter.

ON in BCD mode and S does not contain BCD data.
OFF in all other cases.
126

Timer and Counter Instructions Section 3-5
first input the increment input (II), then the CNTR(012) instruction, the decre-
ment input (DI), and finally the reset input (R).

Examples Basic Operation of CNTR(012)

The counter PV is reset to 0 by turning the reset input (CIO 0000.02) ON and
OFF. The PV is incremented by 1 each time that the increment input
(CIO 0000.00) goes from OFF to ON. When the PV is incremented from the
SV (3), it is automatically reset to 0 and the Completion Flag is turned ON.

Likewise, the PV is decremented by 1 each time that the decrement input
(CIO 0000.01) goes from OFF to ON. When the PV is decremented from 0, it
is automatically set to the SV (3) and the Completion Flag is turned ON.

Specifying the SV in a Word

In the following example, the SV for CNTR(012) 0007 is determined by the
content of CIO 0001. When the content of CIO 0001 is controlled by an exter-
nal switch, the set value can be changed manually from the switch.

SV

0000.00

0000.01

0000.02 Increment input
CIO 0000.00

Counter PV
C0001

Completion Flag
C0001

Decrement input
CIO 0000.01

Reset input
CIO 0000.02

Increment input

Reset input

Decrement
input
127

Timer and Counter Instructions Section 3-5
Coding

Address Instruction Operand

000000 LD 0000.00

000001 LD 0000.01

000002 LD 0000.02

000003 CNTR(012) 6

#5000

000004 LD C0006

000005 OUT 0002.07

000006 LD 0000.03

000007 LD 0000.04

000008 LD 0000.05

000009 CNTR(012) 7

0001

000010 LD NOT C0007

000011 OUT 0002.08

SV:
CIO 0001

0002.08

0000.05

0000.03

0000.04

0000.02

0000.01

0000.00

0002.07

Increment input

Decrement input

Completion Flag

Roll-over Roll-over

Fixed SV:
5000
128

Comparison Instructions Section 3-6
3-6 Comparison Instructions
This section describes instructions used to compare data of various lengths
and in various ways.

3-6-1 Input Comparison Instructions (300 to 328)
Purpose Input comparison instructions compare two values (constants and/or the con-

tents of specified words) and create an ON execution condition when the
comparison condition is true. Input comparison instructions are available to
compare signed or unsigned data of one-word or double length data.

Note Refer to 3-14-19 Single-precision Floating-point Comparison Instructions for
details on single-precision floating-point input comparison instructions.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications
for Instructions for One-
word Data

Instruction Mnemonic Function
code

Page

Input Comparison Instructions =, <>, <, <=, >, >=
(S, L) (LD, AND, OR)

300 to 328 129

COMPARE CMP 020 135

DOUBLE COMPARE CMPL 060 137

SIGNED BINARY COMPARE CPS 114 140

DOUBLE SIGNED BINARY
COMPARE

CPSL 115 142

MULTIPLE COMPARE MCMP 019 145

TABLE COMPARE TCMP 085 147

BLOCK COMPARE BCMP 068 149

EXPANDED BLOCK COMPARE BCMP2 502 152

AREA RANGE COMPARE ZCP 088 155

DOUBLE AREA RANGE COM-
PARE

ZCPL 116 158

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Symbol & options

Variations Creates ON Each Cycle Comparison is True Input compari-
son instruction

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767
129

Comparison Instructions Section 3-6
Operand Specifications
for Instructions for
Double-length Data

Description The input comparison instruction compares S1 and S2 as signed or unsigned
values and creates an ON execution condition when the comparison condition
is true. Unlike instructions such as CMP(020) and CMPL(060), the result of an
input comparison instruction is reflected directly as an execution condition, so
it is not necessary to access the result of the comparison through an Arith-
metic Flag and the program is simpler and faster.

Inputting the Instructions

The input comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area S1 S2

Area S1 S2

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF (binary)

Index Registers IR0 to IR1 (for unsigned data only)

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Input type Operation

LD The instruction can be connected directly to the left bus bar.

AND The instruction cannot be connected directly to the left bus bar.

OR The instruction can be connected directly to the left bus bar.
130

Comparison Instructions Section 3-6
Options

The input comparison instructions can compare signed or unsigned data and
they can compare one-word or double values. If no options are specified, the
comparison will be for one-word unsigned data. With the three input types for
each of 6 symbols and two options, there are 72 different input comparison
instructions.

Unsigned input comparison instructions (i.e., instructions without the S option)
can handle unsigned binary or BCD data. Signed input comparison instruc-
tions (i.e., instructions with the S option) handle signed binary data.

Symbol Option (data format) Option (data length)

= (Equal)
< > (Not equal)

< (Less than)
<= (Less than or equal)
> (Greater than)

>= (Greater than or equal)

None: Unsigned data
S: Signed data

None: One-word data
L: Double-length data

<

<

<

LD connection

AND connection

OR connection

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.
131

Comparison Instructions Section 3-6
Summary of Input Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 72 input comparison instructions. (For one-word comparisons
C1=S1 and C2=S2; for double comparisons C1=S1+1, S1 and C2=S2+1, S2.)

Code Mnemonic Name Function

300 LD= LOAD EQUAL True if
C1 = C2AND= AND EQUAL

OR= OR EQUAL

301 LD=L LOAD DOUBLE EQUAL

AND=L AND DOUBLE EQUAL

OR=L OR DOUBLE EQUAL

302 LD=S LOAD SIGNED EQUAL

AND=S AND SIGNED EQUAL

OR=S OR SIGNED EQUAL

303 LD=SL LOAD DOUBLE SIGNED EQUAL

AND=SL AND DOUBLE SIGNED EQUAL

OR=SL OR DOUBLE SIGNED EQUAL

305 LD<> LOAD NOT EQUAL True if
C1 ≠ C2AND<> AND NOT EQUAL

OR<> OR NOT EQUAL

306 LD<>L LOAD DOUBLE NOT EQUAL

AND<>L AND DOUBLE NOT EQUAL

OR<>L OR DOUBLE NOT EQUAL

307 LD<>S LOAD SIGNED NOT EQUAL

AND<>S AND SIGNED NOT EQUAL

OR<>S OR SIGNED NOT EQUAL

308 LD<>SL LOAD DOUBLE SIGNED NOT EQUAL

AND<>SL AND DOUBLE SIGNED NOT EQUAL

OR<>SL OR DOUBLE SIGNED NOT EQUAL

310 LD< LOAD LESS THAN True if
C1 < C2AND< AND LESS THAN

OR< OR LESS THAN

311 LD<L LOAD DOUBLE LESS THAN

AND<L AND DOUBLE LESS THAN

OR<L OR DOUBLE LESS THAN

312 LD<S LOAD SIGNED LESS THAN

AND<S AND SIGNED LESS THAN

OR<S OR SIGNED LESS THAN

313 LD<SL LOAD DOUBLE SIGNED LESS THAN

AND<SL AND DOUBLE SIGNED LESS THAN

OR<SL OR DOUBLE SIGNED LESS THAN

315 LD<= LOAD LESS THAN OR EQUAL True if
C1 ≤ C2AND<= AND LESS THAN OR EQUAL

OR<= OR LESS THAN OR EQUAL

316 LD<=L LOAD DOUBLE LESS THAN OR EQUAL

AND<=L AND DOUBLE LESS THAN OR EQUAL

OR<=L OR DOUBLE LESS THAN OR EQUAL

317 LD<=S LOAD SIGNED LESS THAN OR EQUAL

AND<=S AND SIGNED LESS THAN OR EQUAL

OR<=S OR SIGNED LESS THAN OR EQUAL
132

Comparison Instructions Section 3-6
Flags

318 LD<=SL LOAD DOUBLE SIGNED LESS THAN OR EQUAL True if
C1 ≤ C2AND<=SL AND DOUBLE SIGNED LESS THAN OR EQUAL

OR<=SL OR DOUBLE SIGNED LESS THAN OR EQUAL

320 LD> LOAD GREATER THAN True if
C1 > C2AND> AND GREATER THAN

OR> OR GREATER THAN

321 LD>L LOAD DOUBLE GREATER THAN

AND>L AND DOUBLE GREATER THAN

OR>L OR DOUBLE GREATER THAN

322 LD>S LOAD SIGNED GREATER THAN

AND>S AND SIGNED GREATER THAN

OR>S OR SIGNED GREATER THAN

323 LD>SL LOAD DOUBLE SIGNED GREATER THAN

AND>SL AND DOUBLE SIGNED GREATER THAN

OR>SL OR DOUBLE SIGNED GREATER THAN

325 LD>= LOAD GREATER THAN OR EQUAL True if
C1 ≥ C2AND>= AND GREATER THAN OR EQUAL

OR>= OR GREATER THAN OR EQUAL

326 LD>=L LOAD DOUBLE GREATER THAN OR EQUAL

AND>=L AND DOUBLE GREATER THAN OR EQUAL

OR>=L OR DOUBLE GREATER THAN OR EQUAL

327 LD>=S LOAD SIGNED GREATER THAN OR EQUAL

AND>=S AND SIGNED GREATER THAN OR EQUAL

OR>=S OR SIGNED GREATER THAN OR EQUAL

328 LD>=SL LOAD DBL SIGNED GREATER THAN OR EQUAL

AND>=SL AND DBL SIGNED GREATER THAN OR EQUAL

OR>=SL OR DBL SIGNED GREATER THAN OR EQUAL

Code Mnemonic Name Function

Name Label Operation

Error Flag ER OFF or unchanged

Greater Than
Flag

> ON if S1 > S2 with one-word data.

ON if S1+1, S1 > S2+1, S2 with double-length data.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if S1 ≥ S2 with one-word data.

ON if S1+1, S1 ≥ S2+1, S2 with double-length data.

OFF in all other cases.

Equal Flag = ON if S1 = S2 with one-word data.

ON if S1+1, S1 = S2+1, S2 with double-length data.

OFF in all other cases.

Not Equal Flag <> ON if S1 ≠ S2 with one-word data.

ON if S1+1, S1 ≠ S2+1, S2 with double-length data.

OFF in all other cases.

Less Than Flag < ON if S1 < S2 with one-word data.

ON if S1+1, S1 < S2+1, S2 with double-length data.

OFF in all other cases.
133

Comparison Instructions Section 3-6
Precautions Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Make sure to program an output instruction or special instruction other than
intermediate instructions after input comparison instructions as a right-hand
instruction.

Examples AND LESS THAN: AND<(310)

When CIO 0000.00 is ON in the following example, the contents of D00100
and D00200 are compared as unsigned binary data. If the content of D00100
is less than that of D00200, CIO 0050.00 is turned ON and execution pro-
ceeds to the next line. If the content of D00100 is not less than that of
D00200, the remainder of the instruction line is skipped and execution moves
to the next instruction line.

AND SIGNED LESS THAN: AND<S(312)

When CIO 0000.01 is ON in the following example, the contents of D00110
and D00210 are compared as signed binary data. If the content of D00110 is
less than that of D00210, CIO 0050.01 is turned ON and execution proceeds
to the next line. If the content of D00110 is not less than that of D00210, the
remainder of the instruction line is skipped and execution moves to the next
instruction line.

Less Than or
Equal Flag

< = ON if S1 ≤ S2 with one-word data.

ON if S1+1, S1 ≤ S2+1, S2 with double-length data.

OFF in all other cases.

Negative Flag N OFF or unchanged (See note.)

Name Label Operation

0050.00

0050.01

0000.00

0000.01

<

<S 34,580 > 14,876

S2: D00200S1: D00100

8714 3A1C

Unsigned
LESS THAN
Comparison

Decimal: 34,580 Decimal: 14,876

(CIO 0050.00 will not be turned ON.)

8714

S1: D00110

 −30,956

3A1C

S2: D00210

 14,876

−30,956 < 14,876

0050.00

0050.01

0000.00

0000.01 Decimal: Decimal:

Signed
LESS THAN
Comparison

(CIO 0050.01 will be turned ON.)
134

Comparison Instructions Section 3-6
3-6-2 COMPARE: CMP(020)
Purpose Compares two unsigned binary values (constants and/or the contents of

specified words) and outputs the result to the Arithmetic Flags in the Auxiliary
Area.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description CMP(020) compares the unsigned binary data in S1 and S2 and outputs the
result to Arithmetic Flags (the Greater Than, Greater Than or Equal, Equal,
Less Than or Equal, Less Than, and Not Equal Flags) in the Auxiliary Area.

CMP(020)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CMP(020)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses in
binary

@ D00000 to @ D32767

Indirect DM addresses in
BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing using
Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

(>, >=, =, <=, <, <>)

Unsigned binary
comparison

Arithmetic Flags
135

Comparison Instructions Section 3-6
Condition Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CMP(020). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CMP(020) Results in the Program

When CMP(020) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CMP(020), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when S1 =
S2.

Using CMP(020) Results in the Program

Do not program another instruction between CMP(020) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CMP(020).

Flags

CMP(020)
Result

Flag status

> > = = < = < < >

S1 > S2 ON ON OFF OFF OFF ON

S1 = S2 OFF ON ON ON OFF OFF

S1 < S2 OFF OFF OFF ON ON ON

CMP

S1

S2

A

Arithmetic Flag
(Example: Equal Flag)

Correct Use of CMP(020)

CMP

S1

S2

A

Incorrect Use of CMP(020)

Instruction
 B

Arithmetic Flag
(Example: Equal Flag)

Name CX-Programmer
label

Label Operation

Error Flag P_ER ER OFF or unchanged

Greater Than Flag P_GT > ON if S1 > S2.

OFF in all other cases.

Greater Than or Equal Flag P_GE > = ON if S1 ≥ S2.

OFF in all other cases.
136

Comparison Instructions Section 3-6
Precautions Do not program another instruction between CMP(020) and an input condition
that accesses the result of CMP(020) because the other instruction might
change the status of the Arithmetic Flags.

3-6-3 DOUBLE COMPARE: CMPL(060)
Purpose Compares two double unsigned binary values (constants and/or the contents

of specified words) and outputs the result to the Arithmetic Flags in the Auxil-
iary Area.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Equal Flag P_EQ = ON if S1 = S2.

OFF in all other cases.

Not Equal Flag P_NE <> ON if S1 ≠ S2.

OFF in all other cases.

Less Than Flag P_LT < ON if S1 < S2.

OFF in all other cases.

Less Than or Equal Flag P_LE < = ON if S1 ≤ S2.

OFF in all other cases.

Negative Flag P_N N OFF or unchanged

Name CX-Programmer
label

Label Operation

CMPL(060)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CMPL(060)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses in
binary

@ D00000 to @ D32767

Indirect DM addresses in
BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)
137

Comparison Instructions Section 3-6
Description CMPL(060) compares the unsigned binary data in S1 +1, S1 and S2+1, S2
and outputs the result to Arithmetic Flags (the Greater Than, Greater Than or
Equal, Equal, Less Than or Equal, Less Than, and Not Equal Flags) in the
Auxiliary Area.

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CMPL(060). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CMPL(060) Results in the Program

When CMPL(060) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CMPL(060), as shown in the following dia-
gram. Here, the Equals Flag and output A will be turned ON when S1 +1, S1 =
S2+1, S2.

Using CMPL(060) Results in the Program

Do not program another instruction between CMPL(060) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CMPL(060).

Index Registers IR0 to IR1

Indirect addressing using
Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area S1 S2

CMPL(060)Result Flag status

> > = = < = < < >

S1 +1, S1 > S2+1, S2 ON ON OFF OFF OFF ON

S1+1, S1 = S2+1, S2 OFF ON ON ON OFF OFF

S1+1, S1 < S2+1, S2 OFF OFF OFF ON ON ON

(>, >=, =, <=, <, <>)

S2+1S1+1

Unsigned binary
comparison

Arithmetic Flags

CMPL

S1

S2

A

Correct Use of CMPL(060)

Arithmetic Flag
(Example: Equal Flag)
138

Comparison Instructions Section 3-6
Flags

Precautions Do not program another instruction between CMPL(060) and an input condi-
tion that accesses the result of CMPL(060) because the other instruction
might change the status of the Arithmetic Flags.

Example When CIO 0000.00 is ON in the following example, the eight-digit unsigned
binary data in CIO 0011 and CIO 0010 is compared to the eight-digit
unsigned binary data in CIO 0009 and CIO 0008 and the result is output to
the Arithmetic Flags. The results recorded in the Greater Than, Equals, and
Less Than Flags are immediately saved to CIO 0002.00 (Greater Than),
CIO 0002.01 (Equals), and CIO 0002.02 (Less Than).

CMPL

S1

S2

A

Incorrect Use of CMPL(060)

Instruction
B

Arithmetic Flag
(Example: Equals Flag)

Name CX-Programmer
label

Label Operation

Error Flag P_ER ER OFF or unchanged

Greater Than Flag P_GT > ON if S1 +1, S1 > S2+1, S2.

OFF in all other cases.

Greater Than or Equal Flag P_GE > = ON if S1 +1, S1 ≥ S2+1, S2.

OFF in all other cases.

Equal Flag P_EQ = ON if S1 +1, S1 = S2+1, S2.

OFF in all other cases.

Not Equal Flag P_NE <> ON if S1 +1, S1 ≠ S2+1, S2.

OFF in all other cases.

Less Than Flag P_LT < ON if S1 +1, S1 < S2+1, S2.

OFF in all other cases.

Less Than or Equal Flag P_LE < = ON if S1 +1, S1 ≤ S2+1, S2.

OFF in all other cases.

Negative Flag P_N N OFF or unchanged

(0)

(0)

(1)

>

=

<

0000.00

0020.00

0020.01

0020.02

S1+1 = CIO 0011 S1 = CIO 0010

S2+1 = CIO 0009 S2 = CIO 0008

Flag status

Result
Comparison
139

Comparison Instructions Section 3-6
3-6-4 SIGNED BINARY COMPARE: CPS(114)
Purpose Compares two signed binary values (constants and/or the contents of speci-

fied words) and outputs the result to the Arithmetic Flags in the Auxiliary Area.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description CPS(114) compares the signed binary data in S1 and S2 and outputs the
result to Arithmetic Flags (the Greater Than, Greater Than or Equal, Equal,
Less Than or Equal, Less Than, and Not Equal Flags) in the Auxiliary Area.

Note CPS(114) treats the data in S1 and S2 as signed binary data which ranges
from 8000 to 7FFF (–32,768 to 32,767 decimal).

CPS(114)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CPS(114)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses in
binary

@ D00000 to @ D32767

Indirect DM addresses in
BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing using
Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

(>, >=, =, <=, <, <>)
Arithmetic Flags

Signed binary
comparison
140

Comparison Instructions Section 3-6
Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CPS(114). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CPS(114) Results in the Program

When CPS(114) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CPS(114), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when S1 =
S2.

Using CPS(114) Results in the Program

Do not program another instruction between CPS(114) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CPS(114).

Flags

CPS(114)
Result

Flag status

> > = = < = < < >

S1 > S2 ON ON OFF OFF OFF ON

S1 = S2 OFF ON ON ON OFF OFF

S1 < S2 OFF OFF OFF ON ON ON

CPS

S1

S2

A

Correct Use of CPS(114)

Arithmetic Flag
(Example: Equal Flag)

CPS

S1

S2

A

Incorrect Use of CPS(114)

Instruction
B

Arithmetic Flag
(Example: Equal Flag)

Name Label Operation

Error Flag ER OFF or unchanged

Greater Than Flag > ON if S1 > S2.
OFF in all other cases.

Greater Than or Equal Flag > = ON if S1 ≥ S2.
OFF in all other cases.
141

Comparison Instructions Section 3-6
Precautions Do not program another instruction between CPS(114) and an input condition
that accesses the result of CPS(114) because the other instruction might
change the status of the Arithmetic Flags.

3-6-5 DOUBLE SIGNED BINARY COMPARE: CPSL(115)
Purpose Compares two double signed binary values (constants and/or the contents of

specified words) and outputs the result to the Arithmetic Flags in the Auxiliary
Area.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Equal Flag = ON if S1 = S2.
OFF in all other cases.

Not Equal Flag <> ON if S1 ≠ S2.
OFF in all other cases.

Less Than Flag < ON if S1 < S2.
OFF in all other cases.

Less Than or Equal Flag < = ON if S1 ≤ S2.
OFF in all other cases.

Negative Flag N OFF or unchanged

Name Label Operation

CPSL(115)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CPSL(115)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses in
binary

@ D00000 to @ D32767

Indirect DM addresses in
BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF

(binary)
142

Comparison Instructions Section 3-6
Description CPSL(115) compares the double signed binary data in S1 +1, S1 and S2+1,
S2 and outputs the result to Arithmetic Flags (the Greater Than, Greater Than
or Equal, Equal, Less Than or Equal, Less Than, and Not Equal Flags) in the
Auxiliary Area.

Note CPSL(115) treats the data in S1 and S2 as double signed binary data which
ranges from 8000 0000 to 7FFF FFFF (–2,147,483,648 to 2,147,483,647 dec-
imal).

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CPSL(115). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CPSL(115) Results in the Program

When CPSL(115) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CPSL(115), as shown in the following dia-
gram. Here, the Equals Flag and output A will be turned ON when S1 +1, S1 =
S2+1, S2.

Using CPSL(115) Results in the Program

Do not program another instruction between CPSL(115) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CPSL(115).

Index Registers ---

Indirect addressing using
Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area S1 S2

(>, >=, =, <=, <, <>)

S2+1S1+1

Signed binary
comparison

Arithmetic Flags

CPSL(115)Result Flag status

> > = = < = < < >

S1 +1, S1 > S2+1, S2 ON ON OFF OFF OFF ON

S1+1, S1 = S2+1, S2 OFF ON ON ON OFF OFF

S1+1, S1 < S2+1, S2 OFF OFF OFF ON ON ON

CPSL

S1

S2

A

Correct Use of CPSL(115)

Arithmetic Flag
(Example: Equal Flag)
143

Comparison Instructions Section 3-6
Flags

Precautions Do not program another instruction between CPSL(115) and an input condi-
tion that accesses the result of CPSL(115) because the other instruction
might change the status of the Arithmetic Flags.

Example When CIO 0000.00 is ON in the following example, the eight-digit signed
binary data in D00002 and D00001 is compared to the eight-digit signed
binary data in D00006 and D00005 and the result is output to the Arithmetic
Flags.

• If the content of D00002 and D00001 is greater than that of D00006 and
D00005, the Greater Than Flag will be turned ON, causing CIO 0020.00
to be turned ON.

• If the content of D00002 and D00001 is equal to that of D00006 and
D00005, the Equals Flag will be turned ON, causing CIO 0020.01 to be
turned ON.

• If the content of D00002 and D00001 is less than that of D00006 and
D00005, the Less Than Flag will be turned ON, causing CIO 0020.02 to
be turned ON.

CPSL

S1

S2

A

Incorrect Use of CPSL(115)

Instruction
B

Arithmetic Flag
(Example: Equal Flag)

Name Label Operation

Error Flag ER OFF or unchanged

Greater Than Flag > ON if S1 +1, S1 > S2+1, S2.

OFF in all other cases.

Greater Than or Equal Flag > = ON if S1 +1, S1 ≥ S2+1, S2.

OFF in all other cases.

Equal Flag = ON if S1 +1, S1 = S2+1, S2.

OFF in all other cases.

Not Equal Flag <> ON if S1 +1, S1 ≠ S2+1, S2.

OFF in all other cases.

Less Than Flag < ON if S1 +1, S1 < S2+1, S2.

OFF in all other cases.

Less Than or Equal Flag < = ON if S1 +1, S1 ≤ S2+1, S2.

OFF in all other cases.

Negative Flag N OFF or unchanged
144

Comparison Instructions Section 3-6
3-6-6 MULTIPLE COMPARE: MCMP(019)
Purpose Compares 16 consecutive words with another 16 consecutive words and

turns ON the corresponding bit in the result word where the contents of the
words are not equal.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: First word of set 1

Specifies the beginning of the first 16-word range. S1 and S1+15 must be in
the same data area.

S2: First word of set 2

Specifies the beginning of the second 16-word range. S2 and S2+15 must be
in the same data area.

R: Result word

Each bit of R contains the result of a comparison between two words in the
16-word sets. Bit n of R (n = 00 to 15) contains the result of the comparison
between words S1+n and S2+n.

(0)
>
=

<

1234 5678

ABCD EF12

D00001

D00005

0000.00

0020.00

0020.01

0020.02

ON (1)

OFF (0)

Flag status

Comparison

MCMP(019)

S1

S2

R

S1: First word of set 1

S2: First word of set 2

R: Result word

Variations Executed Each Cycle for ON Condition MCMP(019)

Executed Once for Upward Differentiation @MCMP(019)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 014

R
1

Comparison result for S1 and S2

Comparison result for S1+1 and S2+1

Comparison result for S1+14 and S2+14

Comparison result for S1+15 and S2+15
145

Comparison Instructions Section 3-6
Operand Specifications

Description MCMP(019) compares the contents of the 16 words S1 through S1+15 to the
contents of the 16 words S2 through S2+15, and turns ON the corresponding
bit in word R when the contents are not equal.

The content of S1 is compared to the content of S2, the content of S1+1 to the
content of S2+1, ..., and the content of S1+15 to the content of S2+15. Bit n of
R is turned OFF if the content of S1+n is equal to the content of S2+n; bit n of
R is turned ON if the contents are not equal. If the contents of all 16 pairs of
words are the same, the Equals Flag will turn ON after the instruction has
been executed.

Flags

Example When CIO 0000.00 is ON in the following example, MCMP(019) compares
words D00100 through D00115 in order to words D00200 through D00215
and turns ON the corresponding bits in D00300 when the words are not
equal.

Area S1 S2 R

CIO Area CIO 0000 to CIO 0240 CIO 0000 to
CIO 0255

Work Area W000 to W240 W000 to W255

Auxiliary Bit Area A000 to A634 A448 to A649

Timer Area T0000 to T0240 T0000 to T0255

Counter Area C0000 to C0240 C0000 to C0255

DM Area D00000 to D32752 D00000 to
D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R
0: Words are equal.
1: Words aren't equal.

Comparison

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result word is 0000.
(The two 16-word sets contain the same data.)
OFF in all other cases.
146

Comparison Instructions Section 3-6
3-6-7 TABLE COMPARE: TCMP(085)
Purpose Compares the source data to the contents of 16 consecutive words and turns

ON the corresponding bit in the result word when the contents of the words
are equal.

Ladder Symbol

Variations

Applicable Program Areas

Operands T: First word of table

Specifies the beginning of the 16-word table. T and T+15 must be in the same
data area.

R: Result word

Each bit of R contains the result of a comparison between S and a word in the
16-word table. Bit n of R (n = 00 to 15) contains the result of the comparison
between S and T+n.

S1: S2:

R: D00300

0000.00

TCMP(085)

S

T

R

S: Source data

T: First word of table

R: Result word

Variations Executed Each Cycle for ON Condition TCMP(085)

Executed Once for Upward Differentiation @TCMP(085)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
147

Comparison Instructions Section 3-6
Operand Specifications

Description TCMP(085) compares the source data (S) to each of the 16 words T through
T+15 and turns ON the corresponding bit in word R when the data are equal.
Bit n of R is turned ON if the content of T+n is equal to S and it is turned OFF
if they are not equal.

S is compared to the content of T and bit 00 of R is turned ON if they are
equal or OFF if they are not equal, S is compared to the content of T+1 and bit
01 of R is turned ON if they are equal or OFF if they are not equal, ..., and S is
compared to the content of T+15 and bit 15 of R is turned ON if they are equal
or OFF if they are not equal.

15 014

R
1

to to

Comparison result for S and T

Comparison result for S and T+1

Comparison result for S and T+14

Comparison result for S and T+15

Comparison data 0

Comparison data 1

Comparison data 15

Area S T R

CIO Area CIO 0000 to
CIO 0255

CIO 0000 to
CIO 0240

CIO 0000 to
CIO 0255

Work Area W000 to W255 W000 to W240 W000 to W255

Auxiliary Bit Area A000 to A649 A000 to A634 A448 to A649

Timer Area T0000 to T0255 T0000 to T0240 T0000 to T0255

Counter Area C0000 to C0255 C0000 to C0240 C0000 to C0255

DM Area D00000 to
D32767

D00000 to
D32752

D00000 to
D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R
1: Data are equal.
0: Data aren't equal.

Comparison
148

Comparison Instructions Section 3-6
Flags

Example When CIO 0000.00 is ON in the following example, TCMP(085) compares the
content of D00100 with the contents of words D00200 through D00215 and
turns ON the corresponding bits in D00300 when the contents are equal or
OFF when the contents are not equal.

3-6-8 BLOCK COMPARE: BCMP(068)
Purpose Compares the source data to 16 ranges (defined by 16 lower limits and 16

upper limits) and turns ON the corresponding bit in the result word when the
source data is within a range.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result word is 0000.
(None of the 16 words in the table equals S.)

OFF in all other cases.

T:S: D00100

R: D00300
0000.00

BCMP(068)

S

B

R

S: Source data

B: First word of block

R: Result word

Variations Executed Each Cycle for ON Condition BCMP(068)

Executed Once for Upward Differentiation @BCMP(068)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
149

Comparison Instructions Section 3-6
Operands B: First word of block

Specifies the beginning of a 32-word block (16 lower/upper limit pairs). B and
B+31 must be in the same data area.

R: Result word

Each bit of R contains the result of a comparison between S and one of the 16
ranges defined the 32-word block. Bit n of R (n = 00 to 15) contains the result
of the comparison between S and the nth pair of words.

Operand Specifications

Description BCMP(068) compares the source data (S) to the 16 ranges defined by pairs
of lower and upper limit values in B through B+31. The first word in each pair
(B+2n) provides the lower limit and the second word (B+2n+1) provides the
upper limit of range n (n = 0 to 15). If S is within any of these ranges (inclusive
of the upper and lower limits), the corresponding bit in R is turned ON. The
rest of the bits in R will be turned OFF.

B ≤ S ≤ B+1 Bit 00 of R
B+2 ≤ S ≤ B+3 Bit 01 of R
B+4 ≤ S ≤ B+5 Bit 02 of R
B+6 ≤ S ≤ B+7 Bit 03 of R
B+8 ≤ S ≤ B+9 Bit 04 of R
B+10 ≤ S ≤ B+11 Bit 05 of R
B+12 ≤ S ≤ B+13 Bit 06 of R
B+14 ≤ S ≤ B+15 Bit 07 of R
B+16 ≤ S ≤ B+17 Bit 08 of R
B+18 ≤ S ≤ B+19 Bit 09 of R

15 014
R

1

Comparison result for S
and range B ↔ B+1

Comparison result for S
and range B+2 ↔ B+3Comparison result for S

and range B+28 ↔ B+29
Comparison result for S
and range B+30 ↔ B+31

Area S B R

CIO Area CIO 0000 to
CIO 0255

CIO 0000 to
CIO 0224

CIO 0000 to
CIO 0255

Work Area W000 to W255 W0000 to W224 W000 to W255

Auxiliary Bit Area A000 to A649 A000 to A618 A448 to A649

Timer Area T0000 to T0255 T0000 to T0224 T0000 to T0255

Counter Area C0000 to C0255 C0000 to C0224 C0000 to C0255

DM Area D00000 to
D32767

D00000 to
D32736

D00000 to
D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1
150

Comparison Instructions Section 3-6
B+20 ≤ S ≤ B+21 Bit 10 of R
B+22 ≤ S ≤ B+23 Bit 11 of R
B+24 ≤ S ≤ B+25 Bit 12 of R
B+26 ≤ S ≤ B+27 Bit 13 of R
B+28 ≤ S ≤ B+29 Bit 14 of R
B+30 ≤ S ≤ B+31 Bit 15 of R

For example, bit 00 of R is turned ON if S is within the first range (B ≤ S ≤
B+1), bit 01 of R is turned ON if S is within the second range (B+2 ≤ S ≤ B+3),
..., and bit 15 of R is turned ON if S is within the fifteenth range (B+30 ≤ S ≤
B+31). All other bits in R are turned OFF.

Flags

Precautions An error will not occur if the lower limit is greater than the upper limit, but 0
(not within the range) will be output to the corresponding bit of R.

Example When CIO 0000.00 is ON in the following example, BCMP(068) compares the
content of D00100 with the 16 ranges defined in D00200 through D00231 and
turns ON the corresponding bits in D00300 when S is within the range or OFF
when S is not within the range.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result word is 0000.
(S is not within any of the 16 ranges.)
OFF in all other cases.

R: D00300

S: D00100

0000.00

4

to

to

to

to

to

to

to

to
to

to

to

to

to

to

to

to
151

Comparison Instructions Section 3-6
3-6-9 EXPANDED BLOCK COMPARE: BCMP2(502)
Purpose Compares the source data to up to 256 ranges (defined by 256 lower limits

and 256 upper limits) and turns ON the corresponding bit in the result word
when the source data is within a range.

Ladder Symbol

Variations

Applicable Program Areas

Operands B: First word of block

Specifies the beginning of a comparison block containing up to 513 words
including up to 256 lower/upper limit pairs). All words must be in the same
data area.

R: First result word

Each bit of each R word contains the result of a comparison between S and
one of the ranges defined by the comparison block. The maximum number of
result words is 16, i.e., m equals 0 to 15.

BCMP2(502)

S

B

R

S: Source data

B: First word of block

R: First result word

Variations Executed Each Cycle for ON Condition BCMP2(502)

Executed Once for Upward Differentiation @BCMP2(502)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

B+31

B+32

B+33

B+34

B+35

B+36

B+37

B+38

B+2N+1

B+2(N+1)

B

B+1

B+2

B+3

B+4

B+5

B+6

07815

Range 15 value A

Range 15 value B

Range 16 value A

Range 16 value B

Range 17 value A

Range 17 value B

Range 18 value A

Range 18 value B

Range N value A

Range N value B

Range 0 value A

Range 0 value B

Range 1 value A

Range 1 value B

Range 2 value A

Range 2 value B

Comparison block
Word

N: 00 to FF hex
(0 to 255)00 hex Last range "N"

Range 0

Range 1

Range 2

Range 15

Range 16

Range 17

Range 18

Range
data

Range N
152

Comparison Instructions Section 3-6
Operand Specifications

Description BCMP2(502) compares the source data (S) to the ranges defined by pairs of
lower and upper limit values in the comparison block. If S is within any of
these ranges (inclusive of the upper and lower limits), the corresponding bits
in the result words (R to R+15 max.) are turned ON. The rest of the bits in R
will be turned OFF.

The number of ranges is determined by the value N set in the lower byte of B.
N can be between 0 and 255. The upper byte of B must be 00 hex.

15 014

Comparison result for
S and range 16m + 14

Comparison result for
S and range 16m + n

Comparison result for
S and range 16m

Comparison result for
S and range 16m + 15

R+m
n

Area S B R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

B+1

B+3

B+5

B+31

B+33

B+35

B+37

B+2N+1

B

0

1

2

15

0

1

2

R

R+1

07815

S
: :

::

B+2

B+4

B+6

B+32

B+34

B+36

B+38

B+2N+2

Bit

Bit

Result words
Comparison ranges

Comparison block

Source data

Range 0 value A

Range 1 value A

Range 2 value A

Range 15 value A

00 hex Last range
"N" N: 00 to FF hex (0 to 255)

Range 0 value B

Range 1 value B

Range 2 value B

Range 15 value B

In range: ON
Not in range: OFF

Ranges

Range 16 value A

Range 17 value A

Range 18 value A

Range N value A

Range 16 value B

Range 17 value B

Range 18 value B

Range N value B
153

Comparison Instructions Section 3-6
Number of Ranges

The number of ranges in the comparison block is set in the first word of the
block. Up to 256 ranges can be set.

Setting Ranges

The values A and B for each range will determine how the comparison oper-
ates depending on which value is larger, as shown below.

Example

When Value A ≤ Value B
If B+1 ≤ S ≤ B+2, then bit 0 of R will turn ON,
If B+3 ≤ S ≤ B+4, then bit 1 of R will turn ON,
If S < B+5 and B+6 < S, then bit 2 of R will turn OFF, and
If S < B+7 and B+8 < S, then bit 3 of R will turn OFF.

Example

When Value A > Value B
If S ≤ B+2 and B+1 ≤ S, then bit 0 of R will turn ON,
If S ≤ B+4 and B+3 ≤ S, then bit 1 of R will turn ON,
If B+6 < S < B+5, then bit 2 of R will turn OFF, and
If B+8 < S < B+7, then bit 3 of R will turn OFF.
Results Storage Location

The results are output to corresponding bits in word R. If there are more than
16 comparison ranges, consecutive words following R will be used.The maxi-
mum number of result words is 16, i.e., m equals 0 to 15.

Flags

Example When CIO 0000.00 is ON in the following example, BCMP2(502) compares
the content of CIO 0010 with the 24 ranges defined in D00200 through
D00247 (N = 17 hex = 23 decimal, i.e., 24 ranges) and turns ON the corre-

Value A Value B

Comparison range

· If Value A ≤ Value B
Then, Value A ≤ Comparison range ≤ Value B

Value B

Comparison
range

· If Value A > Value B
Then, Comparison range ≤ Value B and Value A ≤ Comparison range

Comparison
range

Value A

15 014

Comparison result for
S and range 16m + 14

Comparison result for
S and range 16m + n

Comparison result for
S and range 16m

Comparison result for
S and range 16m + 15

R+m
n

Name Label Operation

Error Flag ER OFF
154

Comparison Instructions Section 3-6
sponding bits in CIO 0100 and CIO 0101 when S is within the range and OFF
when S is not within the range. For example, if the source data in CIO 0010 is
in the range defined by D00201 and D00202, then bit 00 of CIO 0100 is
turned ON and if it in not in the range, then bit 00 of CIO 0100 is turned OFF.
Likewise, the source data in CIO 0010 is compared to the ranges defined by
D00203 and D00204, D00247 and D00248, and the other words in the com-
parison block, and bit 1 in CIO 0100, bit 7 in CIO 0101, and the other bits in
the result words are manipulated according to the results of comparison.

3-6-10 AREA RANGE COMPARE: ZCP(088)
Purpose Compares a 16-bit unsigned binary value (CD) with the range defined by

lower limit LL and upper limit UL. The results are output to the Arithmetic
Flags.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

BCMP2

0010

D00200

0100

0000.00

D00202

D00204

D00206

D00232

D00234

D00236

D00238

D00248

0 1 0 0

0 1 8 0

0 2 6 0

1 8 0 0

0 5 0 0

0 1 0 0

0 2 0 0

2 0 0 0

S: CIO 0010 0 1 7 5

0 0 1 7

D00201

D00203

D00205

D00231

D00233

D00235

D00237

D00247

0 0 0 0

0 0 8 0

0 1 6 0

1 2 0 0

1 5 0 0

1 9 0 0

1 8 0 0

0 1 0 0

R: CIO 0100

R: CIO 0101

Bit

ZCP(088)

CD

LL

UL

CD: Comparison Data

LL: Lower limit of range

UL: Upper limit of range

Variations Executed Each Cycle for ON Condition ZCP(088)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area CD LL UL

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767
155

Comparison Instructions Section 3-6
Description ZCP(088) compares the 16-bit unsigned binary data in CD with the range
defined by LL and UL and outputs the result to the Greater Than, Equals, and
Less Than Flags in the Auxiliary Area. (The Less Than or Equal, Greater
Than or Equal, and Not Equal Flags are left unchanged.)

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
ZCP(088).

Using ZCP(088) Results in the Program

When ZCP(088) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls ZCP(088), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when
LL ≤ CD ≤ UL.

Do not program another instruction between ZCP(088) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of ZCP(088).

Indirect DM addresses in
binary

@ D00000 to @ D32767

Indirect DM addresses in
BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing using
Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area CD LL UL

ZCP(088)Result Flag status

> = <

CD > UL ON OFF OFF

CD = UL OFF ON

LL < CD < UL

CD = LL

CD < LL OFF ON

A

ZCP

CD

LL

UL

Correct Use of ZCP(088)

Arithmetic Flag
(Example: Equal Flag)
156

Comparison Instructions Section 3-6
Flags

Precautions Do not program another instruction between ZCP(088) and an input condition
that accesses the result of ZCP(088) because the other instruction might
change the status of the Arithmetic Flags.

Example When CIO 0000.00 is ON in the following example, the 16-bit unsigned binary
data in D00000 is compared to the range 0005 to 001F hex (5 to 31 decimal)
and the result is output to the Arithmetic Flags.
CIO 0020.00 is turned ON if 0005 hex ≤ content of D00000 ≤ 001F hex.
CIO 0020.01 is turned ON if the content of D00000 > 001F hex.
CIO 0020.02 is turned ON if the content of D00000 < 0005 hex.

A

ZCPL

CD

LL

UL

Incorrect Use of ZCP(088)

Arithmetic Flag
(Example: Equal Flag)

Instruction
 B

Name Label Operation

Error Flag ER ON if LL > UL.

Greater Than Flag > ON if CD > UL.

OFF in all other cases.

Greater Than or Equal Flag > = Left unchanged.

Equal Flag = ON if LL ≤ CD ≤ UL.
OFF in all other cases.

Not Equal Flag <> Left unchanged.

Less Than Flag < ON if CD < LL.
OFF in all other cases.

Less Than or Equal Flag < = Left unchanged.

Negative Flag N Left unchanged.

D00000

LL CD UL

= ON(1)

D00000
> ON(1)

D00000
< ON(1)

≤

>

≤

>

0005 hex 001F hex

001F hex

0005 hex
0020.00

0000.00

>

0020.01

=

0020.02

<

ZCP

D00000

#0005

#001F

CD

LL

UL

Arithmetic
Flags
157

Comparison Instructions Section 3-6
3-6-11 DOUBLE AREA RANGE COMPARE: ZCPL(116)
Purpose Compares a 32-bit unsigned binary value (CD+1, CD) with the range defined

by lower limit (LL+1, LL) and upper limit (UL+1, UL). The results are output to
the Arithmetic Flags.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ZCPL(116) compares the 32-bit unsigned binary data in CD+1, CD with the
range defined by LL+1, LL and UL+1, UL and outputs the result to the Greater
Than, Equals, and Less Than Flags in the Auxiliary Area. (The Less Than or
Equal, Greater Than or Equal, and Not Equal Flags are left unchanged.)

ZCPL(116)

CD

LL

UL

CD: First word of Comparison Data

LL: First word of Lower Limit

UL: First word of Upper Limit

Variations Executed Each Cycle for ON Condition ZCPL(116)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area CD LL UL

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses in
binary

@ D00000 to @ D32767

Indirect DM addresses in
BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers IR0 to IR1

Indirect addressing using
Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
158

Data Movement Instructions Section 3-7
Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
ZCPL(116).

Using ZCPL(116) Results in the Program

When ZCPL(116) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls ZCPL(116).

Do not program another instruction between ZCPL(116) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag.

The operation of ZCPL(116) is almost identical to that of ZCP(088) except that
ZCPL(116) compares 32-bit values instead of 16-bit values. Refer to 3-6-10
AREA RANGE COMPARE: ZCP(088) for diagrams showing how to use
results in the program and an example program section.

Flags

Precautions Do not program another instruction between ZCPL(116) and an input condi-
tion that accesses the result of ZCPL(116) because the other instruction
might change the status of the Arithmetic Flags.

3-7 Data Movement Instructions
This section describes instructions used to move data in various ways.

ZCPL(116) result Flag status

> = <

CD+1, CD > UL+1, UL ON OFF OFF

CD+1, CD = UL+1, UL OFF ON

LL+1, LL < CD+1, CD < UL+1, UL

CD+1, CD = LL+1, LL

CD+1, CD < LL+1, LL OFF ON

Name Label Operation

Error Flag ER ON if LL+1, LL > UL+1, UL.

Greater Than Flag > ON if CD+1, CD > UL+1, UL.
OFF in all other cases.

Greater Than or Equal Flag > = Left unchanged.

Equal Flag = ON if LL+1, LL ≤ CD+1, CD ≤ UL+1, UL.

OFF in all other cases.

Not Equal Flag <> Left unchanged.

Less Than Flag < ON if CD+1, CD < LL+1, LL.
OFF in all other cases.

Less Than or Equal Flag < = Left unchanged.

Negative Flag N Left unchanged.

Instruction Mnemonic Function
code

Page

MOVE MOV 021 160

DOUBLE MOVE MOVL 498 162

MOVE NOT MVN 022 161

DOUBLE MOVE NOT MVNL 499 164

MOVE BIT MOVB 082 165

MOVE DIGIT MOVD 083 167
159

Data Movement Instructions Section 3-7
3-7-1 MOVE: MOV(021)
Purpose Transfers a word of data to the specified word.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description Transfers S to D. If S is a constant, the value can be used for a data setting.

BLOCK TRANSFER XFER 070 169

BLOCK SET BSET 071 171

DATA EXCHANGE XCHG 073 173

SINGLE WORD DISTRIBUTE DIST 080 174

DATA COLLECT COLL 081 176

Instruction Mnemonic Function
code

Page

S

D

MOV(021)

S: Source

D: Destination

Variations Executed Each Cycle for ON Condition MOV(021)

Executed Once for Upward Differentiation @MOV(021)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF (binary) ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Destination wordBit status not
changed.

Source word
160

Data Movement Instructions Section 3-7
Flags

Example When CIO 0000.00 is ON in the following example, the content of CIO 0100 is
copied to D00100.

3-7-2 MOVE NOT: MVN(022)
Purpose Transfers the complement of a word of data to the specified word.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the data being transferred is 0000.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the data being transferred is 1.
OFF in all other cases.

0000.00

CIO 0100

MVN(022)

S

D

S: Source

D: Destination

Variations Executed Each Cycle for ON Condition MVN(022)

Executed Once for Upward Differentiation @MVN(022)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF (binary) ---
161

Data Movement Instructions Section 3-7
Description MVN(022) inverts the bits in S and transfers the result to D. The content of S
is left unchanged.

Flags

Example When CIO 0000.00 is ON in the following example, the status of the bits in
CIO 0100 is inverted and the result is copied to D00100.

3-7-3 DOUBLE MOVE: MOVL(498)
Purpose Transfers two words of data to the specified words.

Ladder Symbol

Variations

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area S D

Destination word

Bit status
inverted.

Source word

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the content of D is 0000 after execution.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of D is 1 after execution.

OFF in all other cases.

0000.00

CIO 0100

S

D

MOVL(498)

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition MOVL(498)

Executed Once for Upward Differentiation @MOVL(498)

Executed Once for Downward Differentiation Not supported
162

Data Movement Instructions Section 3-7
Applicable Program Areas

Operand Specifications

Description MOVL(498) transfers S+1 and S to D+1 and D. If S+1 and S are constants,
the value can be used for a data setting.

Flags

Example When CIO 0000.00 is ON in the following example, the content of D00101 and
D00100 are copied to D00201 and D00200.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers IR0 to IR1

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

S+1 D+1S D

Bit status
not changed.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the contents of D+1 and D are 0000 0000 after exe-
cution.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of D+1 is 1 after execution.
OFF in all other cases.

0000.00
163

Data Movement Instructions Section 3-7
3-7-4 DOUBLE MOVE NOT: MVNL(499)
Purpose Transfers the complement of two words of data to the specified words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description MVNL(499) inverts the bits in S+1 and S and transfers the result to D+1 and
D. The contents of S+1 and S are left unchanged.

Flags

MVNL(499)

S

D

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition MVNL(499)

Executed Once for Upward Differentiation @MVNL(499)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

S+1 D+1S D

Bit status
inverted.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the contents of D+1 and D are 0000 0000 after exe-
cution.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of D+1 is 1 after execution.

OFF in all other cases.
164

Data Movement Instructions Section 3-7
Examples When CIO 0000.00 is ON in the following example, the status of the bits in
D00101 and D00100 are inverted and the result is copied to D00201 and
D00200. (The original contents of D00101 and D00100 are left unchanged.)

3-7-5 MOVE BIT: MOVB(082)
Purpose Transfers the specified bit.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

The rightmost two digits of C indicate which bit of S is the source bit and the
leftmost two digits of C indicate which bit of D is the destination bit.

Operand Specifications

0000.00

S

C

D

MOVB(082)

S: Source word or data

C: Control word

D: Destination word

Variations Executed Each Cycle for ON Condition MOVB(082)

Executed Once for Upward Differentiation @MOVB(082)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

C

Source bit: 00 to 0F
(0 to 15 decimal)

Destination bit: 00 to 0F
(0 to 15 decimal)

m n

Area S C D

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767
165

Data Movement Instructions Section 3-7
Description MOVB(082) copies the specified bit (n) from S to the specified bit (m) in D.
The other bits in the destination word are left unchanged.

Note The same word can be specified for both S and D to copy a bit within a word.

Flags

Examples When CIO 0000.00 is ON in the following example, the 5th bit of the source
word (CIO 0200) is copied to the 12th bit of the destination word (CIO 0100) in
accordance with the control word’s value of 0C05.

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

Specified values
only

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area S C D

Name Label Operation

Error Flag ER ON if the rightmost and leftmost two digits of C are not
within the specified range of 00 to 0F.
OFF in all other cases.

0 C 0 5

0000.00

0100

D: 0100
166

Data Movement Instructions Section 3-7
3-7-6 MOVE DIGIT: MOVD(083)
Purpose Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

The source digits are read from right to left, wrapping back to the rightmost
digit (digit 0) if necessary.

C: Control Word

The first three digits of C indicate the first source digit (m), the number of dig-
its to transfer (n), and the first destination digit (l), as shown in the following
diagram.

D: Destination Word

The destination digits are written from right to left, wrapping back to the right-
most digit (digit 0) if necessary.

Operand Specifications

S

C

D

MOVD(083)

S: Source word or data

C: Control word

D: Destination word

Variations Executed Each Cycle for ON Condition MOVD(083)

Executed Once for Upward Differentiation @MOVD(083)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 011 37 412

S Digit 3 Digit 2 Digit 1 Digit 0

15 8 011 37 412

C 0 l

First digit in S (m): 0 to 3

Number of digits (n): 0 to 3
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First digit in D (ll): 0 to 3

Always 0.

n m

15 8 011 37 412

D Digit 3 Digit 2 Digit 1 Digit 0

Area S C D

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767
167

Data Movement Instructions Section 3-7
Description MOVD(083) copies the content of n digits from S (beginning at digit m) to D
(beginning at digit l). Only the specified digits are changed; the rest are left
unchanged.

If the number of digits being read or written exceeds the leftmost digit of S or
D, MOVD(083) will wrap to the rightmost digit of the same word.

Flags

Examples Four-digit Transfer

When CIO 0000.00 is ON in the following example, four digits of data are cop-
ied from CIO 0200 to CIO 0300. The transfer begins with the digit 1 of
CIO 0200 and digit 0 or CIO 0300, in accordance with the control word’s value
of 0031.

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

Specified values
only

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area S C D

l

Name Label Operation

Error Flag ER ON if one of the first three digits of C is not within the
specified range of 0 to 3.

OFF in all other cases.

0000.00

Digit no.

Digit no.

First digit in D: Digit 0

Number of digits: 3 (4 digits)

First digit in S: Digit 1
168

Data Movement Instructions Section 3-7
Note After reading the leftmost digit of S (digit 3), MOVD(083) wraps to the right-
most digit (digit 0).

Examples of C

The following diagram shows examples of data transfers for various values of
C.

3-7-7 BLOCK TRANSFER: XFER(070)
Purpose Transfers the specified number of consecutive words.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of Words

Specifies the number of words to be transferred. The possible range for N is
0000 to FFFF (0 to 65,535 decimal).

S: First Source Word

Specifies the first source word.

D: First Destination Word

Specifies the first destination word.

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

XFER(070)

N

S

D

N: Number of words

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition XFER(070)

Executed Once for Upward Differentiation @XFER(070)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

S+(N−1)

to to

15 0

D

D+(N−1)

to to
169

Data Movement Instructions Section 3-7
Operand Specifications

Description XFER(070) copies N words beginning with S (S to S+(N–1)) to the N words
beginning with D (D to D+(N–1)).

It is possible for the source words and destination words to overlap, so
XFER(070) can perform word-shift operations.

Flags

Precautions Be sure that the source words (S to S+N–1) and destination words (D to
D+N–1) do not exceed the end of the data area.

Some time will be required to complete XFER(070) when a large number of
words is being transferred. In this case, the XFER(070) transfer might not be
completed if a power interruption occurs during execution of the instruction.

Example When CIO 0000.00 is ON in the following example, the 10 words D00100
through D00109 are copied to D00200 through D00209.

Area N S D

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary) or &0 to
&65535

--- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

D+S+(N−1)
(N−1)

to to
N words

&10

Name Label Operation

Error Flag ER OFF
170

Data Movement Instructions Section 3-7
3-7-8 BLOCK SET: BSET(071)
Purpose Copies the same word to a range of consecutive words.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word
Specifies the source data or the word containing the source data.

St: Starting Word

Specifies the first word in the destination range.

E: End Word

Specifies the last word in the destination range.

Note St and E must be in the same data area.

&10

0000.00

10
words

BSET(071)

S

E

S: Source word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition BSET(071)

Executed Once for Upward Differentiation @BSET(071)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

E

E

Source data

to

Destination range

St

St
171

Data Movement Instructions Section 3-7
Operand Specifications

Description BSET(071) copies the same source word (S) to all of the destination words in
the range St to E.

Flags

Precautions Be sure that the starting word (St) and end word (E) are in the same data area
and that St ≤ E.

Some time will be required to complete BSET(071) when the source data is
being transferred to a large number of words. In this case, the BSET(071)
transfer might not be completed if a power interruption occurs during execu-
tion of the instruction.

Example When CIO 0000.00 is ON in the following example, the source data in D00100
is copied to D00200 through D00209.

Area S St E

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

E

Destination wordsSource word

St

Name Label Operation

Error Flag ER ON if St is greater than E.

OFF in all other cases.
172

Data Movement Instructions Section 3-7
3-7-9 DATA EXCHANGE: XCHG(073)
Purpose Exchanges the contents of the two specified words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description XCHG(073) exchanges the contents of E1 and E2.

S

E

E:

0000.00

St
St:

XCHG(073)

E1

E2

E1: First exchange word

E2: Second exchange word

Variations Executed Each Cycle for ON Condition XCHG(073)

Executed Once for Upward Differentiation @XCHG(073)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area E1 E2

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
173

Data Movement Instructions Section 3-7
Flags

Example When CIO 0000.00 is ON in the following example, the content of D00100 is
exchanged with the content of D00200.

3-7-10 SINGLE WORD DISTRIBUTE: DIST(080)
Purpose Transfers the source word to a destination word calculated by adding an offset

value to the base address.

Ladder Symbol

Variations

Applicable Program Areas

Operands Bs: Destination Base Address

Specifies the destination base address. The offset is added to this address to
calculate the destination word.

Of: Offset

This value is added to the base address to calculate the destination word. The
offset can be any value from 0000 to FFFF (0 to 65,535 decimal), but Bs and
Bs+Of must be in the same data area.

E2E1

Name Label Operation

Error Flag ER OFF or unchanged

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

0000.00

DIST(080)

S S: Source word

Bs: Destination base address

Of: Offset

Bs

Of

Variations Executed Each Cycle for ON Condition DIST(080)

Executed Once for Upward Differentiation @DIST(080)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
174

Data Movement Instructions Section 3-7
Operand Specifications

Description DIST(080) copies S to the destination word calculated by adding Of to Bs.
The same DIST(080) instruction can be used to distribute the source word to
various words in the data area by changing the value of Of.

Flags

Precautions Be sure that the offset does not exceed the end of the data area, i.e., Bs and
Bs+Of are in the same data area.

Example When CIO 0000.00 is ON in the following example, the contents of D00100
will be copied to D00210 (D00200 + 10) if the contents of D00300 is 10 (000A
hexadecimal). The contents of D00100 can be copied to other words by
changing the offset in D00300.

15 0

to
to

Bs

Bs+Of

Area S Bs Of

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649 A000 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

--- #0000 to #FFFF
(binary) or &0 to
&65535

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

S

Bs+n

OfBs

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the source data is 0000.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the source data is 1.
OFF in all other cases.
175

Data Movement Instructions Section 3-7
3-7-11 DATA COLLECT: COLL(081)
Purpose Transfers the source word (calculated by adding an offset value to the base

address) to the destination word.

Ladder Symbol

Variations

Applicable Program Areas

Operands Bs: Source Base Address

Specifies the source base address. The offset is added to this address to cal-
culate the source word.

Of: Offset

This value is added to the base address to calculate the source word. The off-
set can be any value from 0000 to FFFF (0 to 65,535 decimal), but Bs and
Bs+Of must be in the same data area.

Operand Specifications

S: D00100

D00210

S

0 0 0 A

0000.00

Copied by DIST(080).

Offset +10 words

4-digit hexadecimal

Of:
Bs:

Bs

Of

COLL(081)

D

Bs: Source base address

Of: Offset

D: Destination word

Bs

Of

Variations Executed Each Cycle for ON Condition COLL(081)

Executed Once for Upward Differentiation @COLL(081)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

to to

Bs

Of

Area Bs Of D

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767
176

Data Movement Instructions Section 3-7
Description COLL(081) copies the source word (calculated by adding Of to Bs) to the des-
tination word. The same COLL(081) instruction can be used to collect data
from various source words in the data area by changing the value of Of.

Flags

Precautions Be sure that the offset does not exceed the end of the data area, i.e., Bs and
Bs+Of are in the same data area.

Example When CIO 0000.00 is ON in the following example, the contents of D00110
(D00100 + 10) will be copied to D00300 if the content of D00200 is 10 (000A
hexadecimal). The contents of other words can be copied to D00300 by
changing the offset in D00200.

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants --- #0000 to #FFFF
(binary) or &0 to
&65535

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area Bs Of D

Bs

Bs+n

Of

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the source data is 0000.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of the source data is 1.

OFF in all other cases.

D00110

 D00100
0

D

0 0 AD00200

D00101

0000.00

4-digit hexadecimal

Offset +10 words

Copied by COLL(081).

Bs:
Bs

Of
177

Data Shift Instructions Section 3-8
3-8 Data Shift Instructions
This section describes instructions used to shift data within or between words,
but in differing amounts and directions.

3-8-1 SHIFT REGISTER: SFT(010)
Purpose Operates a shift register.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Instruction Mnemonic Function code Page

SHIFT REGISTER SFT 010 178

REVERSIBLE SHIFT REGIS-
TER

SFTR 084 180

ASYNCHRONOUS SHIFT
REGISTER

ASFT 017 183

WORD SHIFT WSFT 016 185

ARITHMETIC SHIFT LEFT ASL 025 186

DOUBLE SHIFT LEFT ASLL 570 188

ARITHMETIC SHIFT RIGHT ASR 026 189

DOUBLE SHIFT RIGHT ASRL 571 191

ROTATE LEFT ROL 027 192

DOUBLE ROTATE LEFT ROLL 572 193

ROTATE LEFT WITHOUT
CARRY

RLNC 574 198

DOUBLE ROTATE LEFT WITH-
OUT CARRY

RLNL 576 199

ROTATE RIGHT ROR 028 195

DOUBLE ROTATE RIGHT RORL 573 196

ROTATE RIGHT WITHOUT
CARRY

RRNC 575 201

DOUBLE ROTATE RIGHT
WITHOUT CARRY

RRNL 577 202

ONE DIGIT SHIFT LEFT SLD 074 204

ONE DIGIT SHIFT RIGHT SRD 075 205

SFT(010)

E

Data input

Shift input

Reset input

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition SFT(010)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK
178

Data Shift Instructions Section 3-8
Operand Specifications

Description When the execution condition on the shift input changes from OFF to ON, all
the data from St to E is shifted to the left by one bit (from the rightmost bit to
the leftmost bit), and the ON/OFF status of the data input is placed in the
rightmost bit.

Flags

Precautions The bit data shifted out of the shift register is discarded.

When the reset input turns ON, all bits in the shift register from the rightmost
designated word (St) to the leftmost designated word (E) will be reset (i.e., set
to 0). The reset input takes priority over other inputs.

St must be less than or equal to E, but even when St is set to greater than E
an error will not occur and one word of data in St will be shifted.

When St and E are designated indirectly using index registers and the actual
addresses in I/O memory are not within memory areas for data, an error will
occur and the Error Flag will turn ON.

Examples Shift Register Exceeding 16 Bits

The following example shows a 48-bit shift register using words CIO 0128 to
CIO 0130. A 1-s clock pulse is used so that the contents of CIO 0000.05 is
input and shifted into a 3-word register between CIO 0128.00 and
CIO 0130.15 every second.

Area St E

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

E

Status of data input
for each shift input

Lost

St+1, St+2, ... St

Name Label Operation

Error Flag ER ON if the indirect IR address for St and E is not in the CIO,
AR, or WR data areas.

OFF in all other cases.
179

Data Shift Instructions Section 3-8
3-8-2 REVERSIBLE SHIFT REGISTER: SFTR(084)
Purpose Creates a shift register that shifts data to either the right or the left.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Note St and E must be in the same data area.

Operand Specifications

E: CIO 0130 CIO 0129 CIO 0128

0000.05

0000.06
(1-s clock)

Reset

Shift input

Data input

Lost

Contents of
CIO 0000.05

St+1: St:

SFTR(084)

C

E

C: Control word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition SFTR(084)

Executed Once for Upward Differentiation @SFTR(084)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 14 13 12

Data input

Reset

Shift input

Shift direction
1 (ON): Left
0 (OFF): Right

Area C St E

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767
180

Data Shift Instructions Section 3-8
Description When the execution condition of the shift input bit (bit 14 of C) changes to ON,
all the data from St to E is moved in the designated shift direction (designated
by bit 12 of C) by 1 bit, and the ON/OFF status of the data input is placed in
the rightmost or leftmost bit. The bit data shifted out of the shift register is
placed in the Carry Flag (CY).

Flags

Precautions The above shift operations are applicable when the reset bit (bit 15 of C) is set
to OFF.

When reset (bit 15 of C) turns ON, all bits in the shift register, from St to E will
be reset (i.e., set to 0).

When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Examples Shifting Data

If shift input CIO 0002.14 goes ON when CIO 0000.00 is ON, and the reset bit
CIO 0002.15 is OFF, words CIO 0100 through CIO 0102 will shift one bit in
the direction designated by CIO 0002.12 (e.g., 1: Left) and the contents of
input bit CIO 0002.13 will be input into the rightmost bit, CIO 0100.00. The
contents of CIO 0102.15 will be shifted to the Carry Flag (CY).

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area C St E

StE

E St Shift direction

Data input

Data input

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into it.

OFF when 0 is shifted into it.
OFF when reset is set to 1.
181

Data Shift Instructions Section 3-8
Resetting Data

If CIO 0002.14 is ON when CIO 0000.00 is ON, and the reset bit,
CIO 0002.15, is ON, words CIO 0100 through CIO 0102 and the Carry Flag
will be reset to OFF.

Controlling Data

Resetting Data

All bits from St to E and the Carry Flag are set to 0 and no other data can be
received when the reset input bit (bit 15 of C) is ON.

Shifting Data Left (from Rightmost to Leftmost Bit)

When the shift input bit (bit 14 of C) is ON, the contents of the input bit (bit 13
of C) is input to bit 00 of the starting word, and each bit thereafter is shifted
one bit to the left. The status of bit 15 of the end word is shifted to the Carry
Flag.

Shifting Data Right (from Leftmost to Rightmost Bit

When the shift input bit (bit 14 of C) is ON, the contents of the input bit (bit 13
of C) is input to bit 15 on the end word, and each bit thereafter is shifted one
bit to the right. The status of bit 00 of the starting word is shifted to the Carry
Flag.

C: 0002

C

E

0000.00

0002

St

Data input:
CIO 0002.13

Reset input bit: 0

Shift input bit: 1

Shift direction

Data
input

Data
input
182

Data Shift Instructions Section 3-8
3-8-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017)
Purpose Shifts all non-zero word data within the specified word range either towards St

or toward E, replacing 0000 hex word data.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Note St and E must be in the same data area.

Operand Specifications

ASFT(017)

C

E

C: Control word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition ASFT(017)

Executed Once for Upward Differentiation @ASFT(017)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 14 13 12

Shift direction
0: Non-zero data shifted toward E
1: Non-zero data shifted toward St

Shift Enable Bit
0: Shift disabled
1: Shift enabled

Clear Bit
0: Data not reset
1: All data from St to E is reset

Area C St E

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1
183

Data Shift Instructions Section 3-8
Description When the Shift Enable Bit (bit 14 of C) is ON, all of the words with non-zero
content within the range of words between St and E will be shifted one word in
the direction determined by the Shift Direction Bit (bit 13 of C) whenever the
word in the shift direction contains all zeros. If ASFT(017) is repeated suffi-
cient times, all all-zero words will be replaced by non-zero words. This will
result in all the data between St and E being divided into zero and non-zero
data.

Flags

Precautions When the Clear Bit (bit 15 of C) goes ON, all bits in the shift register, from St
to E, will be reset (i.e., set to 0). The Clear Bit has priority over the Shift
Enable Bit (bit 14 of C).

When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Examples Shifting Data:

If the Shift Enable Bit, CIO 0002.14, goes ON when CIO 0000.00 is ON, all
words with non-zero data content from CIO 0100 through CIO 0109 will be
shifted in the direction designated by the Shift Direction Bit, CIO 0002.13
(e.g., 1: Toward St) if the word to the left of the non-zero data is all zeros.

. . .

E

E

. . .

Shift direction

Shift enabled

Clear
Convert

Convert

Non-zero data

Zero data

St

St

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.
184

Data Shift Instructions Section 3-8
3-8-4 WORD SHIFT: WSFT(016)
Purpose Shifts data between St and E in word units.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

C: CIO 0300

E:

C

E

0000.00

0002

1 2 3 4

5 6 7 8

9 A B C

1 2 3 4

5 6 7 8

9 A B C

1 2 3 4

5 6 7 8

9 A B C

Non-zero data is
shifted toward St

Shift direction
1: Non-zero data shifted toward St
Shift Enable Bit: 1

Clear

Before ASFT(017) is executed After one execution After two executions

St

St:

WSFT(016)

S

E

S: Source word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition WSFT(016)

Executed Once for Upward Differentiation @WSFT(016)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S St E

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767
185

Data Shift Instructions Section 3-8
Description WSFT(016) shifts data from St to E in word units and the data from the source
word S is placed into St. The contents of E is lost.

Flags

Precautions When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Be sure that the power is not cut while WSFT(016) is being executed,
causing the shift operation to stop halfway through.

Examples When CIO 0000.00 is ON, data from CIO 0100 through CIO 0102 will be
shifted one word toward E. The contents of CIO 0002 will be stored in
CIO 0100 and the contents of CIO 0102 will be lost.

3-8-5 ARITHMETIC SHIFT LEFT: ASL(025)
Purpose Shifts the contents of Wd one bit to the left.

Ladder Symbol

Variations

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area S St E

E

Lost

St

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.

St
E

E: CIO 0102 St+1: CIO 0101 St: CIO 0100

S: CIO 0002

0000.00

0002

Lost

ASL(025)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ASL(025)

Executed Once for Upward Differentiation @ASL(025)

Executed Once for Downward Differentiation Not supported
186

Data Shift Instructions Section 3-8
Applicable Program Areas

Operand Specifications

Description ASL(025) shifts the contents of Wd one bit to the left (from rightmost bit to left-
most bit). “0” is placed in the rightmost bit and the data from the leftmost bit is
shifted into the Carry Flag (CY).

Flags

Precautions When ASL(025) is executed, the Error Flag will turn OFF.

If the contents of Wd is 0000 as the result of the shift, the Equals Flag will turn
ON.

If the contents of the leftmost bit in Wd is 1 as the result of the shift, the Nega-
tive Flag will turn ON.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

15 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.

OFF in all other cases.
187

Data Shift Instructions Section 3-8
Examples When CIO 0000.00 is ON, CIO 0100 will be shifted one bit to the left. “0” will
be placed in CIO 0100.00 and the contents of CIO 0100.15 will be shifted to
the Carry Flag (CY).

3-8-6 DOUBLE SHIFT LEFT: ASLL(570)
Purpose Shifts the contents of Wd and Wd +1 one bit to the left.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ASLL(570) shifts the contents of Wd and Wd +1 one bit to the left (from right-
most bit to leftmost bit). “0” is placed in the rightmost bit of Wd and the con-
tents of the leftmost bit in Wd +1 is shifted into the Carry Flag (CY).

0000.00

Wd: CIO 0100

Wd

ASLL(570)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ASLL(570)

Executed Once for Upward Differentiation @ASLL(570)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
188

Data Shift Instructions Section 3-8
Flags

Precautions When ASLL(570) is executed, the Error Flag will turn OFF.

If the contents of Wd and Wd +1 is 0000 0000 as the result of the shift, the
Equals Flag will turn ON.

If the contents of the leftmost bit in Wd +1 is 1 as the result of the shift, the
Negative Flag will turn ON.

Examples When CIO 0000.00 is ON, word CIO 0100 and CIO 0101 will shift one bit to
the left. “0” is placed into CIO 0100.00 and the contents of CIO 0100.15 will
be shifted to the Carry Flag (CY).

3-8-7 ARITHMETIC SHIFT RIGHT: ASR(026)
Purpose Shifts the contents of Wd one bit to the right.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

WdWd+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000 0000.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.
OFF in all other cases.

0000.00

Wd+1: CIO 0101 Wd: CIO 0100

Wd

ASR(026)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ASR(026)

Executed Once for Upward Differentiation @ASR(026)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255
189

Data Shift Instructions Section 3-8
Description ASR(026) shifts the contents of Wd one bit to the right (from leftmost bit to
rightmost bit). “0” will be placed in the leftmost bit and the contents of the
rightmost bit will be shifted into the Carry Flag (CY).

Flags

Precautions When ASR(026) is executed, the Error Flag and the Negative Flag will turn
OFF.

If the contents of Wd is 0000 as the result of the shift, the Equals Flag will turn
ON.

Examples When CIO 0000.00 is ON, word CIO 0100 will shift one bit to the right. “0” will
be placed in CIO 0100.15 and the contents of CIO 0100.00 will be shifted to
the Carry Flag (CY).

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N OFF

0000.00

Wd: CIO 0100

Wd
190

Data Shift Instructions Section 3-8
3-8-8 DOUBLE SHIFT RIGHT: ASRL(571)
Purpose Shifts the contents of Wd and Wd +1 one bit to the right.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ASRL(571) shifts the contents of Wd and Wd +1 one bit to the right (from left-
most bit to rightmost bit). “0” will be placed in the leftmost bit of Wd +1 and the
contents of the rightmost bit of Wd will be shifted into the Carry Flag (CY).

Flags

ASRL(571)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ASRL(571)

Executed Once for Upward Differentiation @ASRL(571)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

WdWd+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000 0000.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N OFF
191

Data Shift Instructions Section 3-8
Precautions When ASRL (571) is executed, the Error Flag and the Negative Flag will turn
OFF.

If the contents of Wd and Wd +1 is 0000 0000 as the result of the shift, the
Equals Flag will turn ON.

Examples When CIO 0000.00 is ON, word CIO 0100 and CIO 0101 will shift one bit to
the right. “0” will be placed into CIO 0101.15 and the contents of CIO 0100.00
will be shifted to the Carry Flag (CY).

3-8-9 ROTATE LEFT: ROL(027)
Purpose Shifts all Wd bits one bit to the left including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0000.00

Wd+1: CIO 0101 Wd: CIO 0100

Wd

ROL(027)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ROL(027)

Executed Once for Upward Differentiation @ROL(027)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1
192

Data Shift Instructions Section 3-8
Description ROL(027) shifts all bits of Wd including the Carry Flag (CY) to the left (from
rightmost bit to leftmost bit).

Flags

Precautions When ROL(027) is executed, the Error Flag will turn OFF.

If the contents of Wd is 0000 as the result of the shift, the Equals Flag will turn
ON.

If the contents of the leftmost bit in Wd is 1 as the result of the shift, the Nega-
tive Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 0000.00 is ON, word CIO 0100 and the Carry Flag (CY) will shift
one bit to the left. The contents of CIO 0100.15 will be shifted to the Carry
Flag (CY) and the Carry Flag contents will be shifted to CIO 0100.00.

3-8-10 DOUBLE ROTATE LEFT: ROLL(572)
Purpose Shifts all Wd and Wd +1 bits one bit to the left including the Carry Flag (CY).

Ladder Symbol

Variations

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.

OFF in all other cases.

 CIO 0100

0000.00

Instruction executed once

Wd:

Wd

ROLL(572)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ROLL(572)

Executed Once for Upward Differentiation @ROLL(572)

Executed Once for Downward Differentiation Not supported
193

Data Shift Instructions Section 3-8
Applicable Program Areas

Operand Specifications

Description ROLL(572) shifts all bits of Wd and Wd +1 including the Carry Flag (CY) to
the left (from rightmost bit to leftmost bit).

Flags

Precautions When ROLL(572) is executed, the Error Flag will turn OFF.

If the contents of Wd and Wd +1 is 0000 0000 as the result of the shift, the
Equals Flag will turn ON.

If the contents of the leftmost bit in Wd + 1 is 1 as the result of the shift, the
Negative Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 0000.00 is ON, word CIO 0100, CIO 0101 and the Carry Flag (CY)
will shift one bit to the left. The contents of CIO 0101.15 will be shifted to the
Carry Flag (CY) and the Carry Flag contents will be shifted to CIO 0100.00.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000 0000.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.
OFF in all other cases.
194

Data Shift Instructions Section 3-8
3-8-11 ROTATE RIGHT: ROR(028)
Purpose Shifts all Wd bits one bit to the right including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ROR(028) shifts all bits of Wd including the Carry Flag (CY) to the right (from
leftmost bit to rightmost bit).

0000.00

Instruction executed once

Wd+1: CIO 0101 Wd: CIO 0100

Wd

ROR(028)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ROR(028)

Executed Once for Upward Differentiation @ROR(028)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Wd
195

Data Shift Instructions Section 3-8
Flags

Precautions When ROR(028) is executed, the Error Flag will turn OFF.

If the contents of Wd is 0000 as the result of the shift, the Equals Flag will turn
ON.

If the contents of the leftmost bit in Wd is 1 as the result of the shift, the Nega-
tive Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 0000.00 is ON, word CIO 0100 and the Carry Flag (CY) will shift
one bit to the right. The contents of CIO 0100.00 will be shifted to the Carry
Flag (CY) and the Carry Flag contents will be shifted to CIO 0100.15.

3-8-12 DOUBLE ROTATE RIGHT: RORL(573)
Purpose Shifts all Wd and Wd +1 bits one bit to the right including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.
OFF in all other cases.

0000.00

Instruction executed once

Wd

Wd: CIO 0100

RORL(573)

Wd: WordWd

Variations Executed Each Cycle for ON Condition RORL(573)

Executed Once for Upward Differentiation @RORL(573)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
196

Data Shift Instructions Section 3-8
Operand Specifications

Description RORL(573) shifts all bits of Wd and Wd +1 including the Carry Flag (CY) to
the right (from leftmost bit to rightmost bit).

Flags

Precautions When RORL(573) is executed, the Error Flag will turn OFF.

If the contents of Wd and Wd +1 is 0000 0000 as the result of the shift, the
Equals Flag will turn ON.

If the contents of the leftmost bit in Wd + 1 is 1 as the result of the shift, the
Negative Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 0000.00 is ON, word CIO 0100, CIO 0101 and the Carry Flag (CY)
will shift one bit to the right. The contents of CIO 0100.00 will be shifted to the
Carry Flag (CY) and the Carry Flag contents will be shifted to CIO 0101.15.

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

WdWd+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000 0000.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.
OFF in all other cases.
197

Data Shift Instructions Section 3-8
3-8-13 ROTATE LEFT WITHOUT CARRY: RLNC(574)
Purpose Shifts all Wd bits one bit to the left not including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0000.00
Wd

Instruction executed once

Wd: CIO 0100Wd+1: CIO 0101

RLNC(574)

Wd: WordWd

Variations Executed Each Cycle for ON Condition RLNC(574)

Executed Once for Upward Differentiation @RLNC(574)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
198

Data Shift Instructions Section 3-8
Description RLNC(574) shifts all bits of Wd to the left (from rightmost bit to leftmost bit).
The contents of the leftmost bit of Wd shifts to the rightmost bit and to the
Carry Flag (CY).

Flags

Precautions When RLNC(574) is executed, the Error Flag will turn OFF.

If the contents of Wd is 0000 as the result of the shift, the Equals Flag will turn
ON.

If the contents of the leftmost bit in Wd is 1 as the result of the shift, the Nega-
tive Flag will turn ON.

Examples When CIO 0000.00 is ON, word CIO 0100 will shift one bit to the left (exclud-
ing the Carry Flag (CY)). The contents of CIO 0100.15 will be shifted to
CIO 0100.00.

3-8-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576)
Purpose Shifts all Wd and Wd +1 bits one bit to the left not including the Carry Flag

(CY).

Ladder Symbol

Variations

Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.
OFF in all other cases.

1

0000.00

Wd

Instruction executed once

Wd: CIO 0100

RLNL(576)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RLNL(576)

Executed Once for Upward Differentiation @RLNL(576)

Executed Once for Downward Differentiation Not supported
199

Data Shift Instructions Section 3-8
Applicable Program Areas

Operand Specifications

Description RLNL(576) shifts all bits of Wd and Wd +1 to the left (from rightmost bit to left-
most bit). The contents of the leftmost bit of Wd +1 is shifted to the rightmost
bit of Wd, and to the Carry Flag (CY).

Flags

Precautions When RLNL(576) is executed, the Error Flag will turn OFF.

If the contents of Wd and Wd +1 is 0000 0000 as the result of the shift, the
Equals Flag will turn ON.

If the contents of the leftmost bit in Wd + 1 is 1 as the result of the shift, the
Negative Flag will turn ON.

Examples When CIO 0000.00 is ON, word CIO 0100 and CIO 0101 will shift one bit to
the left (excluding the Carry Flag (CY)). The contents of CIO 0101.15 will be
shifted to CIO 0100.00.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000 0000.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.

OFF in all other cases.
200

Data Shift Instructions Section 3-8
3-8-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575)
Purpose Shifts all Wd bits one bit to the right not including the Carry Flag (CY). The

contents of the rightmost bit of Wd shifts to the leftmost bit and to the Carry
Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description RRNC(575) shifts all bits of Wd to the right (from leftmost bit to rightmost bit)
not including the Carry Flag (CY).

0000.00

1

Wd

Instruction executed once

Wd: CIO 0100Wd+1: CIO 0101

RRNC(575)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RRNC(575)

Executed Once for Upward Differentiation @RRNC(575)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
201

Data Shift Instructions Section 3-8
Flags

Precautions When RRNC(575) is executed, the Error Flag will turn OFF.

If the contents of Wd is 0000 as the result of the shift, the Equals Flag will turn
ON.

If the contents of the leftmost bit in Wd is 1 as the result of the shift, the Nega-
tive Flag will turn ON.

Examples When CIO 0000.00 is ON, word CIO 0100 will shift one bit to the right (exclud-
ing the Carry Flag (CY)). The contents of CIO 0100.00 will be shifted to
CIO 0100.15.

3-8-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577)
Purpose Shifts all Wd and Wd +1 bits one bit to the right not including the Carry Flag

(CY). The contents of the rightmost bit of Wd is shifted to the leftmost bit of
Wd +1, and to the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.
OFF in all other cases.

CY

0000.00

Wd

Instruction executed once

Wd: CIO 0100

RRNL(577)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RRNL(577)

Executed Once for Upward Differentiation @RRNL(577)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
202

Data Shift Instructions Section 3-8
Operand Specifications

Description RRNL(577) shifts all bits of Wd and Wd +1 to the right (from leftmost bit to
rightmost bit) not including the Carry Flag (CY).

Flags

Precautions When RRNL(577) is executed, the Error Flag will turn OFF.

If the contents of Wd and Wd +1 is 0000 0000 as the result of the shift, the
Equals Flag will turn ON.

If the contents of the leftmost bit in Wd + 1 is 1 as the result of the shift, the
Negative Flag will turn ON.

Examples When CIO 0000.00 is ON, words CIO 0100 and CIO 0101 will shift one bit to
the right, (excluding the Carry Flag (CY)). The contents of CIO 0100.00 will be
shifted to CIO 0101.15.

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0000 0000.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as the result of the shift.

OFF in all other cases.
203

Data Shift Instructions Section 3-8
3-8-17 ONE DIGIT SHIFT LEFT: SLD(074)
Purpose Shifts data by one digit (4 bits) to the left.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

Description SLD(074) shifts data between St and E by one digit (4 bits) to the left. “0” is
placed in the rightmost digit (bits 3 to 0 of St), and the content of the leftmost
digit (bits 15 to 12 of E) is lost.

0000.00

Wd

Instruction executed once

Wd: CIO 0100Wd+1: CIO 0101

SLD(074)

E

St St: Starting word

E: End word

Variations Executed Each Cycle for ON Condition SLD(074)

Executed Once for Upward Differentiation @SLD(074)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area St E

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
204

Data Shift Instructions Section 3-8
Flags

Precautions When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Be sure that the power is not cut while SLD(074) is being executed,
causing the shift operation to stop halfway through.

Examples When CIO 0000.00 is ON, words CIO 0100 through CIO 0102 will shift by one
digit (4 bits) to the left. A zero will be placed in bits 0 to 3 of word CIO 0100
and the contents of bits 12 to 15 of CIO 0102 will be lost.

3-8-18 ONE DIGIT SHIFT RIGHT: SRD(075)
Purpose Shifts data by one digit (4 bits) to the right.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

E St

Lost

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.

E

0000.00

0 hex

St

Lost

E: CIO 0102 St+1: CIO 0101 St: CIO 0100

SRD(075)

E

St St: Starting word

E: End word

Variations Executed Each Cycle for ON Condition SRD(075)

Executed Once for Upward Differentiation @SRD(075)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area St E

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767
205

Data Shift Instructions Section 3-8
Description SRD(075) shifts data between St and E by one digit (4 bits) to the right. “0” is
placed in the leftmost digit (bits 15 to 12 of E), and the content of the rightmost
digit (bits 3 to 0 of St) is lost.

Flags

Precautions When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Always take care that the power is not cut while SRD(075) is being exe-
cuted, causing the shift operation to stop halfway through.

Examples When CIO 0000.00 is ON, words CIO 0100 through CIO 0102 will shift by one
digit (4 bits) to the right. A zero will be placed in bits 12 to 15 of CIO 0102 and
the contents of bits 0 to 3 of word CIO 0100 will be lost.

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area St E

E E−10 hex

Lost

St

Name Label Operation

Error Flag ER ON when St is greater than E.

OFF in all other cases.

E

0000.00

0 hex

Lost

St

St: CIO 0100E−1: CIO 0101E: CIO 0102
206

Increment/Decrement Instructions Section 3-9
3-9 Increment/Decrement Instructions
This section describes instructions used to increment and decrement binary
or BCD values.

3-9-1 INCREMENT BINARY: ++(590)
Purpose Increments the 4-digit hexadecimal content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The ++(590) instruction adds 1 to the binary content of Wd. The specified
word will be incremented by 1 every cycle as long as the execution condition
of ++(590) is ON. When the up-differentiated variation of this instruction

Instruction Mnemonic Function code Page

INCREMENT BINARY ++ 590 207

DOUBLE INCREMENT BINARY ++L 591 209

DECREMENT BINARY – – 592 210

DOUBLE DECREMENT BINARY – –L 593 212

INCREMENT BCD ++B 594 214

DOUBLE INCREMENT BCD ++BL 595 216

DECREMENT BCD – –B 596 218

DOUBLE DECREMENT BCD – –BL 597 220

++(590)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ++(590)

Executed Once for Upward Differentiation @++(590)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
207

Increment/Decrement Instructions Section 3-9
(@++(590)) is used, the specified word is incremented only when the execu-
tion condition has gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000, and the Negative Flag
will be turned ON when bit 15 of Wd is ON in the result.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd changes from FFFF to 0000.

Flags

Examples Operation of ++(590)
In the following example, the content of D00100 will be incremented by 1
every cycle as long as CIO 0000.00 is ON.

Operation of @++(590)

The up-differentiated variation is used in the following example, so the content
of D00100 will be incremented by 1 only when CIO 0000.00 has gone from
OFF to ON.

Wd Wd

Name Label Operation

Error Flag ER OFF

Equals
Flag

= ON if the content of Wd is 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if the content of Wd changes from FFFF to 0000 during exe-
cution.

OFF in all other cases.

Negative
Flag

N ON if bit 15 of Wd is ON after execution.

OFF in all other cases.

 D00100 D00100
0 0 1 9

0000.00

CIO 0000.00

Wd:

Increment Increment Increment Increment

0 0 1 A

: Execution of ++(590)

Incremented every cycle
while CIO 0000.00 is ON.

Wd:

@++

0 0 1 9 0 0 1 A

0000.00

CIO 0000.00

Increment Increment

Wd: D00100 Wd: D00100

Incremented only for
up-differentiation.

: Execution of @++(590)
208

Increment/Decrement Instructions Section 3-9
3-9-2 DOUBLE INCREMENT BINARY: ++L(591)
Purpose Increments the 8-digit hexadecimal content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description The ++L(591) instruction adds 1 to the 8-digit hexadecimal content of Wd+1
and Wd. The content of the specified words will be incremented by 1 every
cycle as long as the execution condition of ++L(591) is ON. When the up-dif-
ferentiated variation of this instruction (@++L(591)) is used, the content of the
specified words is incremented only when the execution condition has gone
from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000, and the Negative
Flag will be turned ON if bit 15 of Wd+1 is ON in the result.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd and Wd+1 changes from FFFF FFFF to 0000 0000.

++L(591)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition ++L(591)

Executed Once for Upward Differentiation @++L(591)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers IR0 or IR1

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Wd+1 Wd Wd+1 Wd
209

Increment/Decrement Instructions Section 3-9
Flags

Examples Operation of ++L(591)

In the following example, the 8-digit hexadecimal content of D00101 and
D00100 will be incremented by 1 every cycle as long as CIO 0000.00 is ON.

Operation of @++L(591)

The up-differentiated variation is used in the following example, so the content
of D00101 and D00100 will be incremented by 1 only when CIO 0000.00 has
gone from OFF to ON.

3-9-3 DECREMENT BINARY: – –(592)
Purpose Decrements the 4-digit hexadecimal content of the specified word by 1.

Ladder Symbol

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if the content of Wd and Wd+1 changes from
FFFF FFFF to 0000 0000 during execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of Wd+1 is ON after execution.

OFF in all other cases.

 D00101 D00100 D00101 D00100

0000.00

CIO 0000.00

Wd+1: Wd: Wd+1: Wd:

Increment Increment Increment Increment

: Execution of ++L(591)

Incremented every cycle
while CIO 0000.00 is ON.

 D00101 D00100 D00101 D00100

@++L
0000.00

CIO 0000.00

Wd+1: Wd: Wd+1: Wd:

Increment Increment

Incremented only for
up-differentiation.

: Execution of @++L(591)

− −(592)

Wd Wd: Word
210

Increment/Decrement Instructions Section 3-9
Variations

Applicable Program Areas

Operand Specifications

Description The – –(592) instruction subtracts 1 from the binary content of Wd. The spec-
ified word will be decremented by 1 every cycle as long as the execution con-
dition of – –(592) is ON. When the up-differentiated variation of this instruction
(@– –(592)) is used, the specified word is decremented only when the execu-
tion condition has gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000, and the Negative Flag
will be turned ON if bit 15 of Wd is ON in the result.

Both the Carry Flag and the Negative Flag will be turned ON when the content
of Wd changes from 0000 to FFFF.

Flags

Variations Executed Each Cycle for ON Condition – – (592)

Executed Once for Upward Differentiation @– – (592)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Wd Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the content of Wd is 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if the content of Wd changes from 0000 to FFFF dur-
ing execution.

OFF in all other cases.

Negative Flag N ON if bit 15 of Wd is ON after execution.

OFF in all other cases.
211

Increment/Decrement Instructions Section 3-9
Examples Operation of – –(592)

In the following example, the content of D00100 will be decremented by 1
every cycle as long as CIO 0000.00 is ON.

Operation of @– –(592)

The up-differentiated variation is used in the following example, so the content
of D00100 will be decremented by 1 only when CIO 0000.00 has gone from
OFF to ON.

3-9-4 DOUBLE DECREMENT BINARY: – –L(593)
Purpose Decrements the 8-digit hexadecimal content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

 D00100 D00100
−1

0000.00

CIO 0000.00

Decrement Decrement Decrement Decrement

Wd: Wd:

Decremented every cycle
while CIO 0000.00 is ON.

: Execution of − −(592)

@− −

 D00100 D00100

0000.00

CIO 0000.00

Decrement Decrement

−1
Wd: Wd:

Decremented only
for up-differentiation.

: Execution of @− −(592)

− −L(593)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition – –L(593)

Executed Once for Upward Differentiation @– –L(593)

Executed Once for Downward
Differentiation

Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
212

Increment/Decrement Instructions Section 3-9
Operand Specifications

Description The – –L(593) instruction subtracts 1 from the 8-digit hexadecimal content of
Wd+1 and Wd. The content of the specified words will be decremented by 1
every cycle as long as the execution condition of – –L(593) is ON. When the
up-differentiated variation of this instruction (@– –L(593)) is used, the content
of the specified words is decremented only when the execution condition has
gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000, and the Negative
Flag will be turned ON if bit 15 of Wd+1 is ON in the result.

Both the Carry Flag and the Negative Flag will be turned ON when the content
changes from 0000 0000 to FFFF FFFF.

Flags

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers IR0 or IR1

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if the content of Wd and Wd+1 changes from
0000 0000 to FFFF FFFF during execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of Wd+1 is ON after execution.
OFF in all other cases.
213

Increment/Decrement Instructions Section 3-9
Examples Operation of – –L(593)

In the following example, the 8-digit hexadecimal content of D00101 and
D00100 will be decremented by 1 every cycle as long as CIO 0000.00 is ON.

Operation of @– –L(593)

The up-differentiated variation is used in the following example, so the content
of D00101 and D00100 will be decremented by 1 only when CIO 0000.00 has
gone from OFF to ON.

3-9-5 INCREMENT BCD: ++B(594)
Purpose Increments the 4-digit BCD content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

 D00101 D00100 D00101 D00100

−1

0000.00

CIO 0000.00

Decrement Decrement DecrementDecrement

Wd+1: Wd: Wd+1: Wd:

Decremented every cycle
while CIO 0000.00 is ON.

: Execution of − −L(593)

@

−1

 D00101 D00100 D00101 D00100

0000.00

CIO 0000.00

Decrement Decrement

− −L Wd+1: Wd: Wd+1: Wd:

: Execution of @ − −L(593)

Decremented only
for up-differentiation.

++B(594)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ++B(594)

Executed Once for Upward Differentiation @++B(594)

Executed Once for Downward
Differentiation

Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
214

Increment/Decrement Instructions Section 3-9
Operand Specifications

Description The ++B(594) instruction adds 1 to the BCD content of Wd. The specified
word will be incremented by 1 every cycle as long as the execution condition
of ++B(594) is ON. When the up-differentiated variation of this instruction
(@++B(594)) is used, the specified word is incremented only when the execu-
tion condition has gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd changes from 9999 to 0000.

Flags

Precautions The content of Wd must be BCD. If it is not BCD, an error will occur and the
Error Flag will be turned ON.

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in BCD

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Wd Wd

Name Label Operation

Error Flag ER ON if the content of Wd is not BCD.

OFF in all other cases.

Equals Flag = ON if the content of Wd is 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if the content of Wd changes from 9999 to 0000 dur-
ing execution.

OFF in all other cases.
215

Increment/Decrement Instructions Section 3-9
Examples Operation of ++B(594)

In the following example, the BCD content of D00100 will be incremented by 1
every cycle as long as CIO 0000.00 is ON.

Operation of @++B(594)

The up-differentiated variation is used in the following example, so the content
of D00100 will be incremented by 1 only when CIO 0000.00 has gone from
OFF to ON.

3-9-6 DOUBLE INCREMENT BCD: ++BL(595)
Purpose Increments the 8-digit BCD content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

 D00100 D00100

0000.00

CIO 0000.00

Increment Increment Increment Increment

Wd: Wd:

: Execution of ++B(594)

Incremented every cycle
while CIO 0000.00 is ON.

@++B

 D00100 D00100

0000.00

CIO 0000.00

Increment Increment

Wd: Wd:

: Execution of @++B(594)

Incremented only for
up-differentiation.

++BL(595)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition ++BL(595)

Executed Once for Upward Differentiation @++BL(595)

Executed Once for Downward
Differentiation

Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
216

Increment/Decrement Instructions Section 3-9
Operand Specifications

Description The ++BL(595) instruction adds 1 to the 8-digit BCD content of Wd+1 and
Wd. The content of the specified words will be incremented by 1 every cycle
as long as the execution condition of ++BL(595) is ON. When the up-differen-
tiated variation of this instruction (@++BL(595)) is used, the content of the
specified words is incremented only when the execution condition has gone
from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd and Wd+1 changes from 9999 9999 to 0000 0000.

Flags

Precautions The content of Wd+1 and Wd must be BCD. If it is not BCD, an error will occur
and the Error Flag will be turned ON.

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in BCD

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER ON if the content of Wd+1 and Wd is not BCD.

OFF in all other cases.

Equals Flag = ON if the result is 0000 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if the content of Wd and Wd+1 changes from
9999 9999 to 0000 0000 during execution.

OFF in all other cases.
217

Increment/Decrement Instructions Section 3-9
Examples Operation of ++BL(595)

In the following example, the 8-digit BCD content of D00101 and D00100 will
be incremented by 1 every cycle as long as CIO 0000.00 is ON.

Operation of @++BL(595)

The up-differentiated variation is used in the following example, so the BCD
content of D00101 and D00100 will be incremented by 1 only when
CIO 0000.00 has gone from OFF to ON.

3-9-7 DECREMENT BCD: – –B(596)
Purpose Decrements the 4-digit BCD content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

 D00101 D00100 D00101 D00100

0000.00

CIO 0000.00

Increment Increment Increment Increment

Wd+1: Wd: Wd+1: Wd:

: Execution of ++BL(595)

Incremented every cycle
while CIO 0000.00 is ON.

@++BL
 D00101 D00100 D00101 D00100

0000.00

CIO 0000.00

Increment Increment

Wd+1: Wd: Wd+1: Wd:

: Execution of @++BL(595)

Incremented only for
up-differentiation.

− −B(596)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition – –B(596)

Executed Once for Upward Differentiation @– –B(596)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255
218

Increment/Decrement Instructions Section 3-9
Description The – –B(596) instruction subtracts 1 from the BCD content of Wd. The spec-
ified word will be decremented by 1 every cycle as long as the execution con-
dition of – –B(596) is ON. When the up-differentiated variation of this
instruction (@– –B(596)) is used, the specified word is decremented only
when the execution condition has gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 and the Carry Flag will
be turned ON when the content of Wd changes from 0000 to 9999.

Flags

Precautions The content of Wd must be BCD. If it is not BCD, an error will occur and the
Error Flag will be turned ON.

Examples Operation of – –B(596)

In the following example, the BCD content of D00100 will be decremented by
1 every cycle as long as CIO 0000.00 is ON.

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in BCD

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area Wd

−1Wd Wd

Name Label Operation

Error Flag ER ON if the content of Wd is not BCD.

OFF in all other cases.

Equals Flag = ON if the content of Wd is 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if the content of Wd changes from 0000 to 9999 dur-
ing execution.

OFF in all other cases.

 D00100 D00100

−1

0000.00

CIO 0000.00

Decrement Decrement Decrement Decrement

Wd: Wd:

Decremented every cycle
while CIO 0000.00 is ON.

: Execution of − − B(596)
219

Increment/Decrement Instructions Section 3-9
Operation of @– –B(596)

The up-differentiated variation is used in the following example, so the BCD
content of D00100 will be decremented by 1 only when CIO 0000.00 has
gone from OFF to ON.

3-9-8 DOUBLE DECREMENT BCD: – –BL(597)
Purpose Decrements the 8-digit BCD content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

@ − −B

 D00100 D00100

−1

0000.00

CIO 0000.00

Decrement Decrement

Wd: Wd:

Decremented only
for up-differentiation.

: Execution of @− −B(596)

 − −BL(597)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition – –BL(597)

Executed Once for Upward Differentiation @– –BL(597)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in BCD

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
220

Increment/Decrement Instructions Section 3-9
Description The – –BL(597) instruction subtracts 1 from the 8-digit BCD content of Wd+1
and Wd. The content of the specified words will be decremented by 1 every
cycle as long as the execution condition of – –BL(597) is ON. When the up-
differentiated variation of this instruction (@– –BL(597)) is used, the content
of the specified words is decremented only when the execution condition has
gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000 and the Carry
Flag will be turned ON when the content of Wd and Wd+1 changes from
0000 0000 to 9999 9999.

Flags

Precautions The content of Wd+1 and Wd must be BCD. If it is not BCD, an error will occur
and the Error Flag will be turned ON.

Examples Operation of – –BL(597)

In the following example, the 8-digit BCD content of D00101 and D00100 will
be decremented by 1 every cycle as long as CIO 0000.00 is ON.

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER ON if the content of Wd+1 and Wd is not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if the content of Wd and Wd+1 changes from
0000 0000 to 9999 9999 during execution.
OFF in all other cases.

 D00100 D00101 D00100 D00101

0000.00

CIO 0000.00

Decrement Decrement Decrement Decrement

Wd:Wd+1: Wd:Wd+1:
 −1

Decremented every cycle
while CIO 0000.00 is ON.

: Execution of − −BL(597)
221

Symbol Math Instructions Section 3-10
Operation of @– –BL(597)

The up-differentiated variation is used in the following example, so the BCD
content of D00101 and D00100 will be decremented by 1 only when
CIO 0000.00 has gone from OFF to ON.

3-10 Symbol Math Instructions
This section describes the Symbol Math Instructions, which perform arith-
metic operations on BCD or binary data.

@ − −BL

−1

 D00100 D00101 D00100 D00101

0000.00

CIO 0000.00

Decrement Decrement

Wd:Wd+1: Wd:Wd+1:

: Execution of @− −BL(597)

Decremented only
for up-differentiation.

Instruction Mnemonic Function code Page

SIGNED BINARY ADD WITH-
OUT CARRY

+ 400 223

DOUBLE SIGNED BINARY
ADD WITHOUT CARRY

+L 401 225

SIGNED BINARY ADD WITH
CARRY

+C 402 226

DOUBLE SIGNED BINARY
ADD WITH CARRY

+CL 403 228

BCD ADD WITHOUT CARRY +B 404 230

DOUBLE BCD ADD WITHOUT
CARRY

+BL 405 231

BCD ADD WITH CARRY +BC 406 233

DOUBLE BCD ADD WITH
CARRY

+BCL 407 234

SIGNED BINARY SUBTRACT
WITHOUT CARRY

– 410 236

DOUBLE SIGNED BINARY
SUBTRACT WITHOUT CARRY

–L 411 237

SIGNED BINARY SUBTRACT
WITH CARRY

–C 412 241

DOUBLE SIGNED BINARY
SUBTRACT WITH CARRY

–CL 413 243

BCD SUBTRACT WITHOUT
CARRY

–B 414 245

DOUBLE BCD SUBTRACT
WITHOUT CARRY

–BL 415 247

BCD SUBTRACT WITH
CARRY

–BC 416 250

DOUBLE BCD SUBTRACT
WITH CARRY

–BCL 417 251

SIGNED BINARY MULTIPLY * 420 253
222

Symbol Math Instructions Section 3-10
3-10-1 SIGNED BINARY ADD WITHOUT CARRY: +(400)
Purpose Adds 4-digit (single-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

DOUBLE SIGNED BINARY
MULTIPLY

*L 421 255

UNSIGNED BINARY MULTI-
PLY

*U 422 256

DOUBLE UNSIGNED BINARY
MULTIPLY

*UL 423 258

BCD MULTIPLY *B 424 259

DOUBLE BCD MULTIPLY *BL 425 261

SIGNED BINARY DIVIDE / 430 262

DOUBLE SIGNED BINARY
DIVIDE

/L 431 264

UNSIGNED BINARY DIVIDE /U 432 265

DOUBLE UNSIGNED BINARY
DIVIDE

/UL 433 267

BCD DIVIDE /B 434 268

DOUBLE BCD DIVIDE /BL 435 270

Instruction Mnemonic Function code Page

+(400)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +(400)

Executed Once for Upward Differentiation @+(400)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

223

Symbol Math Instructions Section 3-10
Description +(400) adds the binary values in Au and Ad and outputs the result to R.

Flags

Precautions When +(400) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers is negative (in the range 8000 to
FFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers is positive (in the range 0000 to
7FFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00100 and D00110 will
be added as 4-digit signed binary values and the result will be output to
D00120.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area Au Ad R

RCY

+

Au

Ad

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000.

OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers is in
the range 8000 to FFFF hex.

OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers is in
the range 0000 to 7FFF hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

0000.00
224

Symbol Math Instructions Section 3-10
3-10-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)
Purpose Adds 8-digit (double-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description +L(401) adds the binary values in Au and Au+1 and Ad and Ad+1 and outputs
the result to R and R+1.

+L(401)

R

Au

Ad

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +L(401)

Executed Once for Upward Differentiation @+L(401)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers IR0 or IR1

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R+1CY

+

R

Au+1

Ad+1

Au

Ad

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.
225

Symbol Math Instructions Section 3-10
Flags

Precautions When +L(401) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R, R+1 is 0000 0000 hex, the
Equals Flag will turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers is negative (in the range
8000 0000 to FFFF FFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers is positive (in the range
0000 0000 to 7FFF FFFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Examples When CIO 0000.00 is ON, D00100 and D00110 and D00111 and D00110 will
be added as 8-digit signed binary values and the result will be output to
D00120 and D00121.

3-10-3 SIGNED BINARY ADD WITH CARRY: +C(402)
Purpose Adds 4-digit (single-word) hexadecimal data and/or constants with the Carry

Flag (CY).

Ladder Symbol

Variations

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000.

OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.

OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers is in
the range 8000 0000 to FFFF FFFF hex.

OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers is in
the range 0000 0000 to 7FFF FFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

0000.00

+C(402)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +C(402)

Executed Once for Upward Differentiation @+C(402)

Executed Once for Downward Differentiation Not supported.
226

Symbol Math Instructions Section 3-10
Applicable Program Areas

Operand Specifications

Description +C(402) adds the binary values in Au, Ad, and CY and outputs the result to R.

Flags

Precautions When +C(402) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

CY+

RCY

Au

Ad

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the addition result is 0000.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers and
CY is in the range 8000 to FFFF hex.

OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers and
CY is in the range 0000 to 7FFF hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.
227

Symbol Math Instructions Section 3-10
If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers and CY is negative (in the range
8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers and CY is positive (in the range
0000 to 7FFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0000.00 is ON, D00200, D00210, and CY will be added as 4-digit
signed binary values and the result will be output to D00220.

3-10-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403)
Purpose Adds 8-digit (double-word) hexadecimal data and/or constants with the Carry

Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0000.00

+CL(403)

Au

Ad

R

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +CL(403)

Executed Once for Upward Differentiation @+CL(403)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767
228

Symbol Math Instructions Section 3-10
Description +CL(403) adds the binary values in Au and Au+1, Ad and Ad+1, and CY and
outputs the result to R and R+1.

Flags

Precautions When +CL(403) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R, R+1 is 0000 0000 hex, the
Equals Flag will turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers and CY is negative (in the range
8000 0000 to FFFF FFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers and CY is positive (in the range
0000 0000 to 7FFF FFFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0000.00 is ON, D00201, D00200, D00211, D00210, and CY will be
added as 8-digit signed binary values, and the result will be output to D00221
and D00220.

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area Au Ad R

CY+

RCY

Au+1

Ad+1

R+1

Au

Ad (Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000.

OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers and
CY is in the range 8000 0000 to FFFF FFFF hex.

OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers and
CY is in the range 0000 0000 to 7FFF FFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.
229

Symbol Math Instructions Section 3-10
3-10-5 BCD ADD WITHOUT CARRY: +B(404)
Purpose Adds 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description +B(404) adds the BCD values in Au and Ad and outputs the result to R.

0000.00

+B(404)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +B(404)

Executed Once for Upward Differentiation @+B(404)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #9999
(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
230

Symbol Math Instructions Section 3-10
Flags

Precautions If Au or Ad is not BCD, an error is generated and the Error Flag will turn ON.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00100 and D00110 will
be added as 4-digit BCD values, and the result will be output to D00120.

3-10-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405)
Purpose Adds 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

RCY

+

(BCD)

(BCD)

(BCD)

Au

Ad

CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER ON when Au is not BCD.
ON when Ad is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0000.

OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

0000.00

+BL(405)

R

Au

Ad

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +BL(405)

Executed Once for Upward Differentiation @+BL(405)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK
231

Symbol Math Instructions Section 3-10
Operand Specifications

Description +BL(405) adds the BCD values in Au and Au+1 and Ad and Ad+1 and outputs
the result to R, R+1.

Flags

Precautions If Au, Au +1 or Ad, Ad +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the addition, the content of R, R +1 is 0000 0000 hex, the
Equals Flag will turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00101 and D00100 and
D00111 and D00110 will be added as 8-digit BCD values, and the result will
be output to D00121 and D00120.

Area Au Ad R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #9999 9999
(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

CY

+

R

(BCD)

(BCD)

(BCD)R+1

Au +1

Ad+1

Au

Ad

CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER ON when Au, Au +1 is not BCD.

ON when Ad, Ad +1 is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0000 0000.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.

OFF in all other cases.

0000.00
232

Symbol Math Instructions Section 3-10
3-10-7 BCD ADD WITH CARRY: +BC(406)
Purpose Adds 4-digit (single-word) BCD data and/or constants with the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description +BC(406) adds BCD values in Au, Ad, and CY and outputs the result to R.

+BC(406)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +BC(406)

Executed Once for Upward Differentiation @+BC(406)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #9999

(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

CY+

RCY

(BCD)

(BCD)

(BCD)

Au

Ad

CY will turn
ON when there
is a carry.
233

Symbol Math Instructions Section 3-10
Flags

Precautions If Au or Ad is not BCD, an error is generated and the Error Flag will turn ON.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0000.00 is ON in the following example, D00100, D00110, and CY
will be added as 4-digit BCD values, and the result will be output to D00120.

3-10-8 DOUBLE BCD ADD WITH CARRY: +BCL(407)
Purpose Adds 8-digit (double-word) BCD data and/or constants with the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON when Au is not BCD.
ON when Ad is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0000.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

0000.00

+BCL(407)

R

Au

Ad

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +BCL(407)

Executed Once for Upward Differentiation @+BCL(407)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254
234

Symbol Math Instructions Section 3-10
Description +BCL(407) adds the BCD values in Au and Au+1, Ad and Ad+1, and CY and
outputs the result to R, R+1.

Flags

Precautions If Au, Au +1 or Ad, Ad +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the addition, the content of R, R +1 is 0000 0000 hex, the
Equals Flag will turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0000.00 is ON in the following example, D00101, D00100,
D00111, D00110, and CY will be added as 8-digit BCD values, and the result
will be output to D00121 and D00120.

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #9999 9999
(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area Au Ad R

R+1

CY+

RCY

(BCD)

(BCD)

(BCD)

Au +1

Ad+1

Au

Ad

CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER ON when Au, Au +1 is not BCD.
ON when Ad, Ad +1 is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0000 0000.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

0000.00
235

Symbol Math Instructions Section 3-10
3-10-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: –(410)
Purpose Subtracts 4-digit (single-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description –(410) subtracts the binary values in Su from Mi and outputs the result to R.
When the result is negative, it is output to R as a 2’s complement. (Refer to 3-
10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411)
for an example of handling 2’s complements.)

−(410)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –(410)

Executed Once for Upward Differentiation @–(410)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

RCY

−

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)CY will turn ON
when there is a
borrow.
236

Symbol Math Instructions Section 3-10
Flags

Precautions When –(410) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number from a positive number is nega-
tive (in the range 8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of subtracting a positive number from a negative number is posi-
tive (in the range 0000 to 7FFF hex), the Underflow Flag will turn ON.

If as a result of the subtraction, the content of the leftmost bit of R is 1, the
Negative Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00110 will be subtracted
from D00100 as 4-digit signed binary values and the result will be output to
D00120.

3-10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411)
Purpose Subtracts 8-digit (double-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000.

OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.

OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number from
a positive number is in the range 8000 to FFFF hex.

OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a positive number from
a negative number is in the range 0000 to 7FFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

 −
0000.00

−L(411)

R

Mi

Su

Mi: 1st minuend word

Su: 1st subtrahend word

R: 1st result word

Variations Executed Each Cycle for ON Condition –L(411)

Executed Once for Upward Differentiation @–L(411)

Executed Once for Downward Differentiation Not supported.
237

Symbol Math Instructions Section 3-10
Applicable Program Areas

Operand Specifications

Description –L(411) subtracts the binary values in Su and Su+1 from Mi and Mi+1 and
outputs the result to R, R+1. When the result is negative, it is output to R and
R+1 as a 2’s complement.

Flags

Precautions When –L(411) is executed, the Error Flag will turn OFF.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers IR0 or IR1

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Su+1

CY R

Mi+1

R+1

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.

−

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number
from a positive number is in the range 8000 0000 to
FFFF FFFF hex.

OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a positive number from
a negative number is in the range 0000 0000 to
7FFF FFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
238

Symbol Math Instructions Section 3-10
If as a result of the subtraction, the content of R, R+1 is 0000 0000 hex, the
Equals Flag will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number from a positive number is nega-
tive (in the range 8000 0000 to FFFF FFFF hex), the Overflow Flag will turn
ON.

If the result of subtracting a positive number from a negative number is posi-
tive (in the range 0000 0000 to 7FFF FFFF hex), the Underflow Flag will turn
ON.

If as a result of the subtraction, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00111 and D00110 will
be subtracted from D00101 and D00100 as 8-digit signed binary values and
the result will be output to D00121 and D00120.

If the result of a subtraction is a negative number (Mi<Su for –(410) or Mi+1,
Mi <Su+1, Su for –L(411)), the result is output as the 2’s complement and the
Carry Flag (CY) will turn ON to indicate that the result of the subtraction is
negative. To convert the 2’s complement to the true number, an instruction
which subtracts the result from 0000 or 0000 0000 is necessary using the
Carry Flag (CY) as an execution condition.

Note 2’s Complement
A 2’s complement is the value obtained by subtracting each binary digit from 1
and adding one to the result. For example, the 2’s complement for the binary
number 1101 is calculated as follows: 1111 (F hexadecimal) – 1101 (D hexa-
decimal) + 1 (1 hexadecimal) = 0011 (3 hexadecimal). The 2’s complement for
3039 (hexadecimal) is calculated as follows: FFFF (hexadecimal) – 3039
(hexadecimal) + 0001 (hexadecimal) = CFC7 (hexadecimal). Therefore, in
case of 4-digit hexadecimal value, the 2’s complement can be calculated as
follows: FFFF (hexadecimal) – a (hexadecimal) + 0001 (hexadecimal) = b
(hexadecimal). To obtain the true number “a” from the 2’s complement b
(hexadecimal): a (hexadecimal) = 10000 (hexadecimal) – b (hexadecimal).
For example, to obtain the true number “a” from the 2’s complement CFC7
(hexadecimal): 10000 (hexadecimal) – CFC7 = 3039.

 −L
0000.00
239

Symbol Math Instructions Section 3-10
Program Example 20F55A10 – B8A360E3 = –97AE06D3.
In this example, the eight-digit binary value in CIO 0121 and CIO 0120 is sub-
tracted from the value in CIO 0201 and CIO 0200, and the result is output in
eight-digit binary to D00101 and D00100. If the result is negative, the instruc-
tion at (2) will be executed, and the actual result will then be output to D00101
and D00100.

The Carry Flag (CY) is ON, so the result is subtracted from 0000 0000 to
obtain the actual number.

−1
+1−)

65535
1−)

−)
−3
−1−)

65533
65535−)

−) Note 1.

 2.

 3.

 4.

Example 1 Signed data Unsigned data

Example 2 Signed data Unsigned data

FFFF hex
0001 hex

FFFE hex −2 Note 1 65534 Note 2

FFFD hex
FFFF hex

FFFE hex −2 Note 3 65534 Note 4

Carry Flag ON

Negative Flag ON

Carry Flag OFF

Negative Flag ON

Since the Negative Flag is ON, the result (FFFE hex) is a
negative value (2's complement) and is thus −2.

Since the Carry Flag is OFF, the result (FFFE hex) is an
unsigned positive value of 65534.

Since the Negative Flag is ON, the result (FFFE hex) is a
negative value (2's complement) and is thus −2.

Since the Carry Flag is ON, the result (FFFE hex) is a
negative value (2's complement) and becomes −2 when
converted to a true value.

−L

0200

0120

D00100

0000.00

(1)

CY

CY
(2)

RSET

0021.00

SET

0021.00

−L

#00000000

D00100

D00100

"−"display

1

R+1: D00101

 CIO 0121 CIO 0120

2 0 F 5 5 A 0

3E063A8B

6 5 1 F 9 2 D 1

CYR+1: D00100

8

 CIO 0201 CIO 0200

−

Mi+1: Mi:

Subtraction at 1

Su+1: Su:
240

Symbol Math Instructions Section 3-10
The Carry Flag (CY) is turned ON, so the actual number is –97AE06D3.
Because the content of D00101 and D00100 is negative, CY is used to turn
ON CIO 0021.00 to indicate this.

3-10-11 SIGNED BINARY SUBTRACT WITH CARRY: –C(412)
Purpose Subtracts 4-digit (single-word) hexadecimal data and/or constants with the

Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0 0000 0 0

6 5 1 F 9 2 D8

R+1: D00101

3D60EA79 1

CYR+1: D00100

−

0

Su+1: D00101 Su: D00100

Subtraction at 2

R+1: D00101

 D00101 D00100

3D60EA79

6 5 1 F 9 2 D

1

CYR+1: D00100

1

 CIO 0201 CIO 0200

2 0 F 5 5 A 0

8−
Su+1: Su:

Final Subtraction Result

Mi+1: Mi:

−C(412)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –C(412)

Executed Once for Upward Differentiation @–C(412)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255
241

Symbol Math Instructions Section 3-10
Description –C(412) subtracts the binary values in Su and CY from Mi, and outputs the
result to R. When the result is negative, it is output to R as a 2’s complement.
(Refer to 3-10-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: –
CL(413) for an example of handling 2’s complements.)

Flags

Precautions When –C(412) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number and CY from a positive number
is negative (in the range 8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of subtracting a positive number and CY from a negative number
is positive (in the range 0000 to 7FFF hex), the Underflow Flag will turn ON.

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area Mi Su R

CY–

RCY

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the subtraction result is 0000.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.

OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number and
CY from a positive number is in the range 8000 to FFFF
hex.
OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a positive number and
CY from a negative number is in the range 0000 to 7FFF
hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.
242

Symbol Math Instructions Section 3-10
If as a result of the subtraction, the content of the leftmost bit of R is 1, the
Negative Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0000.00 is ON in the following example, D00110 and CY will be
subtracted from D00100 as 4-digit signed binary values and the result will be
output to D00120.

3-10-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: –CL(413)
Purpose Subtracts 8-digit (double-word) hexadecimal data and/or constants with the

Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0000.00

–CL(413)

R

Mi

Su

Mi: 1st minuend word

Su: 1st subtrahend word

R: 1st result word

Variations Executed Each Cycle for ON Condition –CL(413)

Executed Once for Upward Differentiation @–CL(413)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

243

Symbol Math Instructions Section 3-10
Description –CL(413) subtracts the binary values in Su and Su+1 and CY from Mi and
Mi+1, and outputs the result to R, R+1. When the result is negative, it is output
to R, R+1 as a 2’s complement.

Flags

Precautions When –CL(413) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R, R+1 is 0000 0000 hex, the
Equals Flag will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number and CY from a positive number
is negative (in the range 8000 0000 to FFFF FFFF hex), the Overflow Flag will
turn ON.

If the result of subtracting a positive number and CY from a negative number
is positive (in the range 0000 0000 to 7FFF FFFF hex), the Underflow Flag will
turn ON.

If as a result of the subtraction, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0000.00 is ON in the following example, D00111, D00110 and CY
will be subtracted from D00101 and D00100 as 8-digit signed binary values,
and the result will be output to D00121 and D00120.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area Mi Su R

R+1

CY–

RCY

Mi+1

Su+1

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000.

OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.

OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number and
CY from a positive number is in the range 8000 0000 to
FFFF FFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a positive number and
CY from a negative number is in the range 0000 0000 to
7FFF FFFF hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.
244

Symbol Math Instructions Section 3-10
If the result of the subtraction is a negative number (Mi<Su for –C(412) or
Mi+1, Mi <Su+1, Su for –CL(413)), the result is output as a 2’s complement.
The Carry Flag (CY) will turn ON. To convert the 2’s complement to the true
number, a program which subtracts the result from 0000 or 0000 0000 is nec-
essary, using the Carry Flag (CY) as the execution condition. The Carry Flag
turning ON thus indicates that the result of the subtraction is negative.

Note 2’s Complement
A 2’s complement is the value obtained by subtracting each binary digit from 1
and adding one to the result.
Example: The 2’s complement for the binary number 1101 is as follows:

1111 (F hex) – 1101 (D hex) + 1 (1 hex) = 0011 (3 hex).
Example: The 2’s complement for the 4-digit hexadecimal number 3039 is as
follows:

FFFF hex – 3039 hex + 0001 hex = CFC7 hex.
Accordingly, the 2’s complement for the 4-digit hexadecimal number “a” is as
follows:

FFFF hex – a hex + 0001 hex = b hex.
And to obtain the true number “a” hex from the 2’s complement “b” hex:

a hex = 10000 hex – b hex.
Example: To obtain the true number from the 2’s complement CFC7 hex:

10000 hex – CFC7 hex = 3039 hex.

3-10-13 BCD SUBTRACT WITHOUT CARRY: –B(414)
Purpose Subtracts 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0000.00

–B(414)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –B(414)

Executed Once for Upward Differentiation @–B(414)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649
245

Symbol Math Instructions Section 3-10
Description –B(414) subtracts the BCD values in Su from Mi and outputs the result to R. If
the result of the subtraction is negative, the result is output to R as a 10’s com-
plement. (Refer to 3-10-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –
BL(415) for an example of handling 10’s complements.)

Flags

Precautions If Mi and/or Su are not BCD, an error is generated and the Error Flag will turn
ON.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If a subtraction results in a borrow, the Carry Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00110 is subtracted from
D00100 as 4-digit BCD values, and the result will be output to D00120.

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #9999

(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area Mi Su R

RCY

–

(BCD)

(BCD)

(BCD)

Mi

Su

CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER ON when Mi is not BCD.
ON when Su is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0000.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

0000.00
246

Symbol Math Instructions Section 3-10
3-10-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –BL(415)
Purpose Subtracts 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description –BL(415) subtracts the BCD values in Su and Su+1 from Mi and Mi+1 and
outputs the result to R, R+1. If the result is negative, it is output to R, R+1 as a
10’s complement.

–BL(415)

R

Mi

Su

Mi: 1st minuend word

Su: 1st subtrahend word

R: 1st result word

Variations Executed Each Cycle for ON Condition –BL(415)

Executed Once for Upward Differentiation @–BL(415)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #9999 9999

(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

R+1CY

–

R

(BCD)

(BCD)

(BCD)

Mi +1

Su+1

Mi

Su

CY will turn
ON when there
is a borrow.
247

Symbol Math Instructions Section 3-10
Flags

Precautions If Mi, Mi +1 and/or Su, Su +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the subtraction, the content of R, R +1 is 0000 0000 hex, the
Equals Flag will turn ON.

If a subtraction results in a borrow, the Carry Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00111 and D00110 will
be subtracted from D00101 and D00100 as 8-digit BCD values, and the result
will be output to D00121 and D00120.

If the result of the subtraction is a negative number (Mi<Su for –B(414) or
Mi+1, Mi <Su+1, Su for –BL(415)), the result is output as a 10’s complement.
The Carry Flag (CY) will turn ON. To convert the 10’s complement to the true
number, a program which subtracts the result from 0 is necessary, using the
Carry Flag (CY) as the execution condition. The Carry Flag turning ON thus
indicates that the result of the subtraction is negative.

Note 10’s Complement
A 10’s complement is the value obtained by subtracting each digit from 9 and
adding one to the result. For example, the 10’s complement for 7556 is calcu-
lated as follows: 9999 – 7556 + 1 = 2444. For a four digit number, the 10’s
complement of A is 9999 – A + 1 = B. To obtain the true number from the 10’s
complement B: A = 10000 – B. For example, to obtain the true number from
the 10’s complement 2444: 10000 – 2444 = 7556.

Program Example 9,583,960 – 17,072,641 = –7,488,681.
In this example, the eight-digit BCD content of CIO 0121 and CIO 0120 is
subtracted from the content of CIO 0201 and CIO 0200, and the result is out-
put in eight-digit BCD to D00101 and D00100. The result is negative, so the
instruction at (2) will be executed, and the true number will then be output to
D00101 and D00100.

Name Label Operation

Error Flag ER ON when Mi and/or Mi +1 are not BCD.
ON when Su and/or Su +1 are not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0000 0000.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

0000.00
248

Symbol Math Instructions Section 3-10
The Carry Flag (CY) is ON, so the result is subtracted from 0000 0000.

The Carry Flag (CY) will be turned ON, so the actual number is –7,488,681.
Because the content of D00101 and D00100 is negative, CY is used to turn
ON CIO 0021.00 to indicate this.

−BL

0200

0120

D00100

0000.00

(1)

CY

CY
(2)

RSET

0021.00

SET

0021.00

−BL

#00000000

D00100

D00100

"−" display

6

 CIO 0201 CIO 0200

R+1: D00101

 CIO 0121 CIO 0120

–

0 9 5 8 3 9 0

14627071

9 2 5 1 1 3 1 9 1

CYR+1: D00100

09583960 + (100000000 – 17072641)

Subtraction at 1

Mi+1: Mi:

Su+1: Su:

 D00101 D00100

–

0

9 2 5 1 1 3 1 9

0000 0 0

R+1: D00101

0 4 8 8 6 8 1 1

CYR+1: D00100

00000000 + (100000000 – 92511319)

7

0

Subtraction at 2

Su+1: Su:

R+1: D00101

 CIO 0121 CIO 0120

–

18688470

1 7 2 6 4 1

1

CY R+1: D00100

6

 CIO 0201 CIO 0200

0 9 5 8 3 9 0

7 0

Su+1: Su:

Final Subtraction Result

Mi+1: Mi:
249

Symbol Math Instructions Section 3-10
3-10-15 BCD SUBTRACT WITH CARRY: –BC(416)
Purpose Subtracts 4-digit (single-word) BCD data and/or constants with the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description –BC(416) subtracts BCD values in Su and CY from Mi and outputs the result
to R. If the result is negative, it is output to R as a 10’s complement. (Refer to
3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417) for an exam-
ple of handling 10’s complements.)

–BC(416)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –BC(416)

Executed Once for Upward Differentiation @–BC(416)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #9999

(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

CY

RCY

(BCD)

(BCD)

(BCD)

–

Mi

Su

CY will turn
ON when there
is a borrow.
250

Symbol Math Instructions Section 3-10
Flags

Precautions If Mi and/or Su are not BCD, an error is generated and the Error Flag will turn
ON.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If a subtraction results in a borrow, the Carry Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0000.00 is ON in the following example, D00110 and CY will be
subtracted from D00100 as 4-digit BCD values, and the result will be output to
D00120.

3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417)
Purpose Subtracts 8-digit (double-word) BCD data and/or constants with the Carry

Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON when Mi is not BCD.
ON when Su is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0000.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

0000.00

–BCL(417)

R

Mi

Su

Mi: 1st minuend word

Su: 1st subtrahend word

R: 1st result word

Variations Executed Each Cycle for ON Condition –BCL(417)

Executed Once for Upward Differentiation @–BCL(417)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254
251

Symbol Math Instructions Section 3-10
Description –BCL(417)subtracts the BCD values in Su, Su+1, and CY from Mi and Mi+1
and outputs the result to R, R+1. If the result is negative, it is output to R, R+1
as a 10’s complement.

Flags

Precautions If Mi, Mi +1 and/or Su, Su +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the subtraction, the content of R, R +1 is 0000 0000 hex, the
Equals Flag will turn ON.

If an subtraction results in a borrow, the Carry Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0000.00 is ON in the following example, D00111, D00110, and CY
will be subtracted from D00101 and D00100 as 8-digit BCD values, and the
result will be output to D00121 and D00120.

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #9999 9999
(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area Mi Su R

R+1

CY

RCY

(BCD)

(BCD)

(BCD)

–

Mi +1

Su+1

Mi

Su

CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER ON when Mi and/or Mi +1 are not BCD.
ON when Su and/or Su +1 are not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0000 0000.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.
252

Symbol Math Instructions Section 3-10
If the result of the subtraction is a negative number (Mi<Su for –BC(416) or
Mi+1, Mi <Su+1, Su for –BCL(417)), the result is output as a 10’s comple-
ment. The Carry Flag (CY) will turn ON. To convert the 10’s complement to
the true number, a program which subtracts the result from 0 is necessary,
using the Carry Flag (CY) as the execution condition. The Carry Flag turning
ON thus indicates that the result of the subtraction is negative.

Note 10’s Complement
A 10’s complement is the value obtained by subtracting each digit from 9 and
adding one to the result. For example, the 10’s complement for 7556 is calcu-
lated as follows: 9999 – 7556 + 1 = 2444. For a four digit number, the 10’s
complement of A is 9999 – A + 1 = B. To obtain the true number from the 10’s
complement B: A = 10000 – B. For example, to obtain the true number from
the 10’s complement 2444: 10000 – 2444 = 7556.

3-10-17 SIGNED BINARY MULTIPLY: *(420)
Purpose Multiplies 4-digit signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0000.00

*(420)

R

Md

Mr

Md: Multiplicand word

Mr: Multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *(420)

Executed Once for Upward Differentiation @*(420)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 0255 CIO 0000 to
CIO 0254

Work Area W000 to W255 W000 to W254

Auxiliary Bit Area A000 to A649 A448 to A648

Timer Area T0000 to T0255 T0000 to T0254

Counter Area C0000 to C0255 C0000 to C0254

DM Area D00000 to D32767 D00000 to
D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767
253

Symbol Math Instructions Section 3-10
Description *(420) multiplies the signed binary values in Md and Mr and outputs the result
to R, R+1.

Flags

Precautions When *(420) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R, R+1 is 0000 0000 hex, the
Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 and R
is 1, the Negative Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00100 and D00110 will
be multiplied as 4-digit signed hexadecimal values and the result will be out-
put to D00120.

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area Md Mr R

R +1 R

×

Md

Mr

(Signed binary)

(Signed binary)

(Signed binary)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

0000.00
254

Symbol Math Instructions Section 3-10
3-10-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421)
Purpose Multiplies 8-digit signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description *L(421) multiplies the signed binary values in Md and Md+1 and in Mr and
Mr+1 and outputs the result to R, R+1, R+2, and R+3.

*L(421)

R

Md

Mr

Md: 1st multiplicand word

Mr: 1st multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *L(421)

Executed Once for Upward Differentiation @*L(421)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 0254 CIO 0000 to
CIO 0252

Work Area W000 to W254 W000 to W252

Auxiliary Bit Area A000 to A648 A448 to A646

Timer Area T0000 to T0254 T0000 to T0252

Counter Area C0000 to C0254 C0000 to C0252

DM Area D00000 to D32766 D00000 to
D32764

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R + 1 RR + 3 R + 2

×

Md + 1 Md

Mr + 1 Mr

(Signed binary)

(Signed binary)

(Signed binary)
255

Symbol Math Instructions Section 3-10
Flags

Precautions When *L(421) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is
0000 0000 0000 0000 hex, the Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+3 is 1,
the Negative Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00101, D00100,
D00111, and D00110 will be multiplied as 8-digit signed hexadecimal values
and the result will be output to D00123, D00122, D00121, and D00120.

3-10-19 UNSIGNED BINARY MULTIPLY: *U(422)
Purpose Multiplies 4-digit unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0 (all 16 bits).

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

0000.00

*U(422)

R

Md

Mr

Md: Multiplicand word

Mr: Multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *U(422)

Executed Once for Upward Differentiation @*U(422)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 0255 CIO 0000 to
CIO 0254

Work Area W000 to W255 W000 to W254

Auxiliary Bit Area A000 to A649 A448 to A648

Timer Area T0000 to T0255 T0000 to T0254

Counter Area C0000 to C0255 C0000 to C0254
256

Symbol Math Instructions Section 3-10
Description *U(420) multiplies the unsigned binary values in Md and Mr and outputs the
result to R, R+1.

Flags

Precautions When *U(422) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R, R+1 is 0000 0000 hex, the
Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 is 1,
the Negative Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00100 and D00110 will
be multiplied as 4-digit unsigned binary values and the result will be output to
D00121 and D00120.

DM Area D00000 to D32767 D00000 to
D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area Md Mr R

R +1 R

Md

Mr

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

×

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

0000.00
257

Symbol Math Instructions Section 3-10
3-10-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423)
Purpose Multiplies 8-digit unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description *UL(423) multiplies the unsigned binary values in Md and Md+1 and in Mr and
Mr+1 and outputs the result to R, R+1, R+2, and R+3.

*UL(423)

R

Md

Mr

Md: 1st multiplicand word

Mr: 1st multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *UL(423)

Executed Once for Upward Differentiation @*UL(423)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 0254 CIO 0000 to
CIO 0252

Work Area W000 to W254 W000 to W252

Auxiliary Bit Area A000 to A648 A448 to A646

Timer Area T0000 to T0254 T0000 to T0252

Counter Area C0000 to C0254 C0000 to C0252

DM Area D00000 to D32766 D00000 to
D32764

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R + 1 RR + 3 R + 2

Md + 1 Md

Mr + 1 Mr

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

×

258

Symbol Math Instructions Section 3-10
Flags

Precautions When *UL(423) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is
0000 0000 0000 0000 hex, the Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+3 is 1,
the Negative Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00101, D00100,
D00111, and D00110 will be multiplied as 8-digit unsigned binary values and
the result will be output to D00123, D00122, D00121, and D00120.

3-10-21 BCD MULTIPLY: *B(424)
Purpose Multiplies 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0 (all 16 bits).

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

0000.00

*B(424)

R

Md

Mr

Md: Multiplicand word

Mr: Multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *B(424)

Executed Once for Upward Differentiation @*B(424)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 0255 CIO 0000 to
CIO 0254

Work Area W000 to W255 W000 to W254

Auxiliary Bit Area A000 to A649 A448 to A648

Timer Area T0000 to T0255 T0000 to T0254

Counter Area C0000 to C0255 C0000 to C0254
259

Symbol Math Instructions Section 3-10
Description *B(424) multiplies the BCD content of Md and Mr and outputs the result to R,
R+1.

Flags

Precautions If Md and/or Mr are not BCD, an error will be generated and the Error Flag will
turn ON.

If as a result of the multiplication, the content of R, R+1 is 0000 0000 hex, the
Equals Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00100 and D00110 will
be multiplied as 4-digit BCD values and the result will be output to D00121
and D00120.

DM Area D00000 to D32767 D00000 to
D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #9999
(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area Md Mr R

R +1 R

(BCD)

(BCD)

(BCD)

×

Md

Mr

Name Label Operation

Error Flag ER ON when Md is not BCD.

ON when Mr is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0000 0000.
OFF in all other cases.

0000.00
260

Symbol Math Instructions Section 3-10
3-10-22 DOUBLE BCD MULTIPLY: *BL(425)
Purpose Multiplies 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description *BL(425) multiplies BCD values in Md and Md+1 and in Mr and Mr+1 and out-
puts the result to R, R+1, R+2, and R+3.

*BL(425)

R

Md

Mr

Md: 1st multiplicand word

Mr: 1st multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *BL(425)

Executed Once for Upward Differentiation @*BL(425)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 0254 CIO 0000 to
CIO 0252

Work Area W000 to W254 W000 to W252

Auxiliary Bit Area A000 to A648 A448 to A646

Timer Area T0000 to T0254 T0000 to T0252

Counter Area C0000 to C0254 C0000 to C0252

DM Area D00000 to D32766 D00000 to
D32764

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #9999 9999
(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

×

Md + 1 Md

Mr + 1 Mr
261

Symbol Math Instructions Section 3-10
Flags

Precautions If Md, Md+1 and/or Mr, Mr+1 are not BCD, an error will be generated and the
Error Flag will turn ON.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is
0000 0000 0000 0000 hex, the Equals Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00101, D00100,
D00111, and D00110 will be multiplied as 8-digit BCD values and the result
will be output to D00123, D00122, D00121 and D00120.

3-10-23 SIGNED BINARY DIVIDE: /(430)
Purpose Divides 4-digit (single-word) signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON when Md and/or Md+1 are not BCD.
ON when Mr and/or Mr +1 are not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0 (all 16 bits).
OFF in all other cases.

0000.00

/(430)

R

Dd

Dr

Dd: Dividend word

Dr: Divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /(430)

Executed Once for Upward Differentiation @/(430)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 0255 CIO 0000 to
CIO 0254

Work Area W000 to W255 W000 to W254

Auxiliary Bit Area A000 to A649 A448 to A648

Timer Area T0000 to T0255 T0000 to T0254

Counter Area C0000 to C0255 C0000 to C0254

DM Area D00000 to D32767 D00000 to
D32766
262

Symbol Math Instructions Section 3-10
Description /(430) divides the signed binary (16 bit) values in Dd by those in Dr and out-
puts the result to R, R+1. The quotient is placed in R and the remainder in
R+1.

Flags

Precautions Dividing 8000 hex by FFFF hex will produce an inconsistent result.

When the content of Dr is 0000 hex, an error will be generated and the Error
Flag will turn ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00100 will be divided by
D00110 as 4-digit signed binary values and the quotient will be output to
D00120 and the remainder to D00121.

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

#0001 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area Dd Dr R

R +1 R

÷

Dd

Dr

Remainder Quotient

(Signed binary)

(Signed binary)

(Signed binary)

Name Label Operation

Error Flag ER ON when Dr is 0000.

OFF in all other cases.

Equals Flag = ON when as a result of the division, R is 0000.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R is 1.
OFF in all other cases.

0000.00
263

Symbol Math Instructions Section 3-10
3-10-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)
Purpose Divides 8-digit (double-word) signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description /L(431) divides the signed binary values in Dd and Dd+1 by those in Dr and
Dr+1 and outputs the result to R, R+1, R+2, and R+3. The quotient is output
to R and R+1 and the remainder is output to R+2 and R+3.

/L(431)

R

Dd

Dr

Dd: 1st dividend word

Dr: 1st divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /L(431)

Executed Once for Upward Differentiation @/L(431)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 0254 CIO 0000 to
CIO 0252

Work Area W000 to W254 W000 to W252

Auxiliary Bit Area A000 to A648 A448 to A646

Timer Area T0000 to T0254 T0000 to T0252

Counter Area C0000 to C0254 C0000 to C0252

DM Area D00000 to D32766 D00000 to
D32764

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to
#FFFF FFFF

(binary)

#0000 0001 to
#FFFF FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1
264

Symbol Math Instructions Section 3-10
Flags

Precautions Dividing 8000 0000 hex by FFFF FFFF hex will produce an inconsistent result.

When the content of Dr+1 and Dr is 0000 0000, the Error Flag will turn ON.

If as a result of the division, the content of R+1, R is 0000 0000 hex, the
Equals Flag will turn ON.

If as a result of the division, the content of the leftmost bit of R+1 is 1, the Neg-
ative Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00101 and D00100 are
divided by D00111 and D00110 as 8-digit signed hexadecimal values and the
quotient will be output to D00121 and D00120 and the remainder to D00123
and D00122.

3-10-25 UNSIGNED BINARY DIVIDE: /U(432)
Purpose Divides 4-digit (single-word) unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

R + 1 RR + 3 R + 2

÷

Dd + 1 Dd

Dr + 1 Dr

Remainder

(Signed binary)

(Signed binary)

(Signed binary)

Quotient

Name Label Operation

Error Flag ER ON when Dr and Dr+1 is 0000 0000.
OFF in all other cases.

Equals Flag = ON when as a result of the division, R+1, R is 0000 0000.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R+1 is 1.
OFF in all other cases.

0000.00

/U(432)

R

Dd

Dr

Dd: Dividend word

Dr: Divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /U(432)

Executed Once for Upward Differentiation @/U(432)

Executed Once for Downward Differentiation Not supported.
265

Symbol Math Instructions Section 3-10
Applicable Program Areas

Operand Specifications

Description /U(432) divides the unsigned binary values in Dd by those in Dr and outputs
the quotient to R and the remainder to R+1.

Flags

Precautions When the content of Dr is 0000 hex, the Error Flag will turn ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 0255 CIO 0000 to
CIO 0254

Work Area W000 to W255 W000 to W254

Auxiliary Bit Area A000 to A649 A448 to A648

Timer Area T0000 to T0255 T0000 to T0254

Counter Area C0000 to C0255 C0000 to C0254

DM Area D00000 to D32767 D00000 to
D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

#0001 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R +1 R

÷

Dd

Dr

Remainder

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Quotient

Name Label Operation

Error Flag ER ON when Dr is 0000.
OFF in all other cases.

Equals Flag = ON when as a result of the division, R is 0000 hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R is 1.
OFF in all other cases.
266

Symbol Math Instructions Section 3-10
Examples When CIO 0000.00 is ON in the following example, D00100 will be divided by
D00110 as 4-digit unsigned binary values and the quotient will be output to
D00120 and the remainder will be output to D00121.

3-10-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)
Purpose Divides 8-digit (double-word) unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0000.00

/UL(433)

R

Dd

Dr

Dd: 1st dividend word

Dr: 1st divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /UL(433)

Executed Once for Upward Differentiation @/UL(433)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 0254 CIO 0000 to
CIO 0252

Work Area W000 to W254 W000 to W252

Auxiliary Bit Area A000 to A648 A448 to A646

Timer Area T0000 to T0254 T0000 to T0252

Counter Area C0000 to C0254 C0000 to C0252

DM Area D00000 to D32766 D00000 to
D32764

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to
#FFFF FFFF

(binary)

#0000 0001 to
#FFFF FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1
267

Symbol Math Instructions Section 3-10
Description /UL(433) divides the unsigned binary values in Dd and Dd+1 by those in Dr
and Dr+1 and outputs the quotient to R, R+1 and the remainder to R+2, and
R+3.

Flags

Precautions When the content of Dr, Dr+1 is 0000 0000 hex, the Error Flag will turn ON.

If as a result of the division, the content of R, R+1, is 0000 0000 hex, the
Equals Flag will turn ON.

If as a result of the division, the content of the leftmost bit of R+1 is 1, the Neg-
ative Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00100 and D00101 will
be divided by D00111 and D00110 as 8-digit unsigned hexadecimal values
and the quotient will be output to D00121 and D00120 and the remainder to
D00123 and D00122.

3-10-27 BCD DIVIDE: /B(434)
Purpose Divides 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

R + 1 RR + 3 R + 2

÷

Dd + 1 Dd

Dr + 1 Dr

Remainder Quotient

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Name Label Operation

Error Flag ER ON when Dr and Dr+1 is 0000 0000 hex.
OFF in all other cases.

Equals Flag = ON when as a result of the division R+1, R is 0000 0000
hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R+1 is 1.
OFF in all other cases.

0000.00

/B(434)

R

Dd

Dr

Dd: Dividend word

Dr: Divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /B(434)

Executed Once for Upward Differentiation @/B(434)

Executed Once for Downward Differentiation Not supported.
268

Symbol Math Instructions Section 3-10
Applicable Program Areas

Operand Specifications

Description /B(434) divides the BCD content of Dd by that of Dr and outputs the quotient
to R and the remainder to R+1.

Flags

Precautions If Dd or Dr is not BCD or if Dr is 0000, an error will be generated and the Error
Flag will turn ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

Examples When CIO 0000.00 is ON in the following example, D00100 will be divided by
D00110 as 4-digit BCD values and the quotient will be output to D00120 and
the remainder to D00121.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 0255 CIO 0000 to
CIO 0254

Work Area W000 to W255 W000 to W254

Auxiliary Bit Area A000 to A649 A448 to A648

Timer Area T0000 to T0255 T0000 to T0254

Counter Area C0000 to C0255 C0000 to C0254

DM Area D00000 to D32767 D00000 to
D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #9999
(BCD)

#0001 to #9999
(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R +1 R

(BCD)

(BCD)

(BCD)

÷

Dd

Dr

Remainder Quotient

Name Label Operation

Error Flag ER ON when Dd is not BCD.
ON when Dr is not BCD.

ON when Dr is 0000.
OFF in all other cases.

Equals Flag = ON when R is 0000 hex.
OFF in all other cases.
269

Symbol Math Instructions Section 3-10
3-10-28 DOUBLE BCD DIVIDE: /BL(435)
Purpose Divides 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description /BL(435) divides BCD values in Dd and Dd+1 by those in Dr and Dr+1 and
outputs the quotient to R, R+1 and the remainder to R+2, R+3.

0000.00

/BL(435)

R

Dd

Dr

Dd: 1st dividend word

Dr: 1st divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /BL(435)

Executed Once for Upward Differentiation @/BL(435)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 0254 CIO 0000 to
CIO 0252

Work Area W000 to W254 W000 to W252

Auxiliary Bit Area A000 to A648 A448 to A646

Timer Area T0000 to T0254 T0000 to T0252

Counter Area C0000 to C0254 C0000 to C0252

DM Area D00000 to D32766 D00000 to
D32764

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to
#9999 9999
(BCD)

#0000 0001 to
#9999 9999
(BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
270

Conversion Instructions Section 3-11
Flags

Precautions If Dd, Dd+1 and/or Dr, Dr+1 are not BCD or the content of Dr, Dr+1 is
0000 0000 hex, an error will be generated and the Error Flag will turn ON.

If as a result of the division, the content of R, R+1 is 0000 0000 hex, the
Equals Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, D00101 and D00100 will
be divided by D00111 and D00110 as 8-digit BCD values and the quotient will
be output to D00121 and D00120 and the remainder to D00123 and D00122.

3-11 Conversion Instructions
This section describes instructions used for data conversion.

Dd + 1

Dr + 1

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

÷

Dd

Dr

Remainder Quotient

Name Label Operation

Error Flag ER ON when Dd, Dd+1 is not BCD.
ON when Dr, Dr +1 is not BCD.

ON when the content of Dr+1 and Dr is 0000 0000 hex.
OFF in all other cases.

Equals Flag = ON when as the result of a division R+1 and R is
0000 0000.
OFF in all other cases.

0000.00

Instruction Mnemonic Function code Page

BCD-TO-BINARY BIN 023 272

DOUBLE BCD-TO-DOUBLE
BINARY

BINL 058 273

BINARY-TO-BCD BCD 024 275

DOUBLE BINARY-TO-DOU-
BLE BCD

BCDL 059 276

2’S COMPLEMENT NEG 160 278

DOUBLE 2’S COMPLEMENT NEGL 161 279

ASCII CONVERT ASC 086 281

ASCII TO HEX HEX 162 285
271

Conversion Instructions Section 3-11
3-11-1 BCD-TO-BINARY: BIN(023)
Purpose Converts BCD data to binary data.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description BIN(023) converts the BCD data in S to binary data and writes the result to R.

Flags

Example The following diagram shows an example BCD-to-binary conversion.

BIN(023)

S

R

S: Source word

R: Result word

Variations Executed Each Cycle for ON Condition BIN(023)

Executed Once for Upward Differentiation @BIN(023)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

(BCD) (BIN)RS

Name Label Operation

Error Flag ER ON if the content of S is not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N OFF
272

Conversion Instructions Section 3-11
When CIO 0000.00 is ON in the following example, the 4-digit BCD value in
CIO 0010 is converted to hexadecimal and stored in D00200.

3-11-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058)
Purpose Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

×103 ×102 ×101 ×100 ×163 ×162 ×161 ×160

RS

3

×103

4 5 2 3452 = 0 × 163 + 13 × 162 + 7 × 161 + 12 × 160

0 D 7 C

BIN

0010

D00200

0000.00

015

15 0

S: CIO 0010

R: D00200

×100×101×102

×163 ×160×161×162

BINL(058)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition BINL(058)

Executed Once for Upward Differentiation @BINL(058)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---
273

Conversion Instructions Section 3-11
Description BINL(058) converts the 8-digit BCD data in S and S+1 to 8-digit hexadecimal
(32-bit binary) data and writes the result to R and R+1.

Flags

Examples The following diagram shows an example of 8-digit BCD-to-binary conversion.

When CIO 0000.00 is ON in the following example, the 8-digit BCD value in
CIO 0010 and CIO 0011 is converted to hexadecimal and stored in D00200
and D00201.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area S R

RR+1

(BCD) (BCD)

S+1 S

(BIN) (BIN)

Name Label Operation

Error Flag ER ON if the content of S+1, S is not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000 0000 hex.

OFF in all other cases.

Negative Flag N OFF

×103×102×101×100 ×163 ×162×161×160×107×106×105×104 ×167×166×165×164

R+1 RS+1 S

0 0 2 0 0 0 5 0

x103
 x102 x101 x100x107

 x106
 x105

 x104

0 0 0 3 0 D 7 2

 x163
 x162 x161 x160x167

 x166
 x165

 x164

S+1: CIO 0011 S: CIO 0010

R+1: D00201 R: D00200

200050=3X164+13X162+7X161+2X160

0000.00
274

Conversion Instructions Section 3-11
3-11-3 BINARY-TO-BCD: BCD(024)
Purpose Converts a word of binary data to a word of BCD data.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

S must be between 0000 and 270F hexadecimal (0000 and 9999 BCD).

Operand Specifications

Description BCD(024) converts the binary data in S to BCD data and writes the result to
R.

Flags

BCD(024)

S

R

S: Source word

R: Result word

Variations Executed Each Cycle for ON Condition BCD(024)

Executed Once for Upward Differentiation @BCD(024)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

(BCD)(BIN) RS

Name Label Operation

Error Flag ER ON if the content of S is not between 0000 to 270F hex (0
to 9999 decimal).
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.
275

Conversion Instructions Section 3-11
Precautions The content of S must be between 0000 to 270F hex (0000 to 9999 decimal).

Example The following diagram shows an example BCD-to-binary conversion.

When CIO 0000.00 is ON in the following example, the 4-digit hexadecimal
value in CIO 0010 is converted to BCD and stored in D00100.

3-11-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(059)
Purpose Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word

The content of S+1 and S must be between 0000 0000 and 05F5 E0FF hexa-
decimal (0000 0000 and 9999 9999 BCD).

Note S and S+1, as well as D and D+1 must be in the same data area.

Operand Specifications

R
×163 ×162 ×161 ×160 ×103 ×102 ×101 ×100

S

1

163

0

162

E

161

C

160

10EC = 1 × 163 + 0 × 162 + 14 × 161 + 12 × 160 → 4332

4

103

3

102

3

101

2

100

BCD

0010

D00100

0000.00

015

15 0

S: CIO 0010

R: D00100

BCDL(059)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition BCDL(059)

Executed Once for Upward Differentiation @BCDL(059)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254
276

Conversion Instructions Section 3-11
Description BCDL(059) converts the 8-digit hexadecimal (32-bit binary) data in S and S+1
to 8-digit BCD data and writes the result to R and R+1.

Flags

Precautions The content of S+1 and S must be between 0000 0000 to 05F5 E0FF hex
(0000 0000 to 9999 9999 decimal).

Examples The following diagram shows an example of 8-digit BCD-to-binary conversion.

When CIO 0000.00 is ON in the following example, the hexadecimal value in
CIO 0011 and CIO 0010 is converted to a BCD value and stored in D00101
and D00100.

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area S R

RR+1

(BIN) (BIN)

S+1 S

(BCD) (BCD)

Name Label Operation

Error Flag ER ON if the content of S and S+1 is not between 0000 0000
to 05F5 E0FF hexadecimal (0000 0000 to 9999 9999
decimal).

OFF in all other cases.

Equals Flag = ON if the result is 0000 0000.

OFF in all other cases.

R+1 R

×163×162×161×160×167×166×165×164 ×103 ×102×101×100×107×106×105×104

S+1 S
277

Conversion Instructions Section 3-11
3-11-5 2’S COMPLEMENT: NEG(160)
Purpose Calculates the 2’s complement of a word of hexadecimal data.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

3 2 0 A0 0 2 D

x167
 x166

 x165
 x164

S+1: CIO 0011 S: CIO 0010

1 9 3 00 2 9 6

x107
 x106

 x105
 x104

 x163
 x162

 x161
 x160

 x103
 x102

 x101
 x100

2X165
 +13X164+3X163+2X162+10=2961930

R+1: D00101 R: D00100

MBS

MBS LSB

LSB

0000.00

NEG(160)

S

R

S: Source word

R: Result word

Variations Executed Each Cycle for ON Condition NEG(160)

Executed Once for Upward Differentiation @NEG(160)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
278

Conversion Instructions Section 3-11
Description NEG(160) calculates the 2’s complement of S and writes the result to R. The
2’s complement calculation basically reverses the status of the bits in S and
adds 1.

Note This operation (reversing the status of the bits and adding 1) is equivalent to
subtracting the content of S from 0000.

Flags

Note The result for 8000 hex will be 8000 hex.

Example When CIO 0000.00 is ON in the following example, NEG(160) calculates the
2’s complement of the content of D00100 and writes the result to D00200.

3-11-6 DOUBLE 2’S COMPLEMENT: NEGL(161)
Purpose Calculates the 2’s complement of two words of hexadecimal data.

Ladder Symbol

Variations

Applicable Program Areas

(S) (R)

2's complement
(Complement + 1)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of the result is ON.
OFF in all other cases.

−)

0000.00

Add 1

Actual
calculation

Equivalent
subtraction

Reverse bit status

NEGL(161)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition NEGL(161)

Executed Once for Upward Differentiation @NEGL(161)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
279

Conversion Instructions Section 3-11
Operand Specifications

Note S and S+1 as well as R and R+1 must be in the same data area

Description NEGL(161) calculates the 2’s complement of S+1 and S and writes the result
to R+1 and R. The 2’s complement calculation basically reverses the status of
the bits in S+1 and S and adds 1.

Note This operation (reversing the status of the bits and adding 1) is equivalent to
subtracting the content of S+1 and S from 0000 0000.

Flags

Note The result for 8000 0000 hex will be 8000 0000 hex.

Example When CIO 0000.00 is ON in the following example, NEGL(161) calculates the
2’s complement of the content of D00101 and D00100 and writes the result to
D00201 and D00200.

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

(S+1, S) (R+1, R)

2's complement
(Complement + 1)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 of R+1 is ON.

OFF in all other cases.
280

Conversion Instructions Section 3-11
3-11-7 ASCII CONVERT: ASC(086)
Purpose Converts 4-bit hexadecimal digits in the source word into their 8-bit ASCII

equivalents. This instruction can be used only in the Coordinator Module.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

Up to four digits in the source word can be converted. The digits are num-
bered 0 to 3, right to left.

Di: Digit Designator

The digit designator specifies various parameters for the conversion, as
shown in the following diagram.

−)

0000.00

Add 1

Actual
calculation

Equivalent
subtraction

Reverse bit status

ASC(086)

S

D

Di

S: Source word

Di: Digit designator

D: First destination word

Variations Executed Each Cycle for ON Condition ASC(086)

Executed Once for Upward Differentiation @ASC(086)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

S Digit 3 Digit 2
8111215

Digit 1 Digit 0
0347

All data starting from the first digit to be
converted is taken as hexadecimal data and
converted to ASCII. Digit 0 follows digit 3.
281

Conversion Instructions Section 3-11
D: First destination word

The converted ASCII data is written to the destination word(s) beginning with
the specified byte in D. Three destination words (D to D+3) will be required if 4
digits are being converted and the leftmost byte is selected as the first byte in
D. The destination words must be in the same data area.

Any bytes in the destination word(s) that are not overwritten with ASCII data
will be left unchanged.

Operand Specifications

Description ASC(086) treats the contents of S as 4 hexadecimal digits, converts the des-
ignated digit(s) of S into their 8-bit ASCII equivalents, and writes this data into
the destination word(s) beginning with the specified byte in D.

 3 2 1 0

Specifies the first digit in S to be converted (0 to 3).

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First byte of D to be used.
0: Rightmost byte
1: Leftmost byte

Parity 0: None
1: Even
2: Odd

Digit number:

Area S Di D

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants --- Specified values
only

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
282

Conversion Instructions Section 3-11
Parity

It is possible to specify the parity of the ASCII data for use in error control dur-
ing data transmissions. The leftmost bit of each ASCII character will be auto-
matically adjusted for even, odd, or no parity.

When no parity (0) is designated, the leftmost bit will always be zero. When
even parity (1) is designated, the leftmost bit will be adjusted so that the total
number of ON bits is even. When odd parity (2) is designated, the leftmost bit
of each ASCII character will be adjusted so that there is an odd number of ON
bits. The status of the parity bit does not affect the meaning of the ASCII code.

Examples of even parity:
When adjusted for even parity, ASCII “31” (00110001) will be “B1” (10110001:
parity bit turned ON to create an even number of ON bits); ASCII “36”
(00110110) will be “36” (00110110: parity bit remains OFF because the num-
ber of ON bits is already even).

Examples of odd parity:
When adjusted for odd parity, ASCII “36” (00110110) will be “B6” (10110110:
parity bit turned ON to create an odd number of ON bits); ASCII “46”
(01000110) will be “46” (01000110: parity bit remains OFF because the num-
ber of ON bits is already odd).

Examples of Di

When two or more digits are being converted, ASC(086) will read the bytes in
S from right to left and will wrap around to the rightmost byte if necessary. The
following diagram shows some example values for Di and the conversions that
they produce.

Right (0)Left (1)

Di

Number of
digits (n+1)

First digit to convert
283

Conversion Instructions Section 3-11
Flags

Example When CIO 0000.00 is ON in the following example, ASC(086) converts three
hexadecimal digits in D00100 (beginning with digit 1) into their ASCII equiva-
lents and writes this data to D00200 and D00201 beginning with the leftmost
byte in D00200. In this case, a digit designator of #0121 specifies no parity,
the starting byte (when writing) = leftmost byte, the number of digits to read =
3, and the starting digit (when reading) = digit 1.

Di: #0011 Di: #0112 Di: #0030

Di: #0130

Digit 3 Digit 2 Digit 1 Digit 0

Leftmost Rightmost

Digit 3 Digit 2 Digit 1 Digit 0 Digit 3 Digit 2 Digit 1 Digit 0

Leftmost

Rightmost

Leftmost Rightmost

Leftmost Rightmost

Digit 3 Digit 2 Digit 1 Digit 0

Leftmost

Rightmost

Rightmost

Leftmost

Name Label Operation

Error Flag ER ON if the content of Di is not within the specified ranges.

OFF in all other cases.

D:

S

D

S: D00100

0000.00

Di: #

Number of digits

Digits

Di

Starting digit

Starting byte
(leftmost byte)
284

Conversion Instructions Section 3-11
ASCII Conversion Example

*: Parity bit: Depends on parity designation.

3-11-8 ASCII TO HEX: HEX(162)
Purpose Converts up to 4 bytes of ASCII data in the source word to their hexadecimal

equivalents and writes these digits in the specified destination word. This
instruction can be used only in the Coordinator Module.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word

The contents of the source words are treated as ASCII data. Up to three
source words can be used. (Three source words will be required if 4 bytes are
being converted and the leftmost byte is selected as the first byte in S.) The
source words must be in the same data area.

Contents of digit being
converted

Converted (output) data

Value Bit status Code (MSB) Bit status (LSB)

0 0 0 0 0 30 hex * 0 1 1 0 0 0 0

1 0 0 0 1 31 hex * 0 1 1 0 0 0 1

2 0 0 1 0 32 hex * 0 1 1 0 0 1 0

3 0 0 1 1 33 hex * 0 1 1 0 0 1 1

4 0 1 0 0 34 hex * 0 1 1 0 1 0 0

5 0 1 0 1 35 hex * 0 1 1 0 1 0 1

6 0 1 1 0 36 hex * 0 1 1 0 1 1 0

7 0 1 1 1 37 hex * 0 1 1 0 1 1 1

8 1 0 0 0 38 hex * 0 1 1 1 0 0 0

9 1 0 0 1 39 hex * 0 1 1 1 0 0 1

A 1 0 1 0 41 hex * 1 0 0 0 0 0 1

B 1 0 1 1 42 hex * 1 0 0 0 0 1 0

C 1 1 0 0 43 hex * 1 0 0 0 0 1 1

D 1 1 0 1 44 hex * 1 0 0 0 1 0 0

E 1 1 1 0 45 hex * 1 0 0 0 1 0 1

F 1 1 1 1 46 hex * 1 0 0 0 1 1 0

HEX(162)

S

D

Di

S: First source word

Di: Digit designator

D: Destination word

Variations Executed Each Cycle for ON Condition HEX(162)

Executed Once for Upward Differentiation @HEX(162)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
285

Conversion Instructions Section 3-11
Di: Digit Designator

The digit designator specifies various parameters for the conversion, as
shown in the following diagram.

D: Destination word

The converted hexadecimal digits are written into D from right to left, begin-
ning with the specified first digit. Any digits in the destination word that are not
overwritten with the converted data will be left unchanged.

Operand Specifications

Description HEX(162) treats the contents of the source word(s) as ASCII data represent-
ing hexadecimal digits (0 to 9 and A to F), converts the specified number of
bytes to hexadecimal, and writes the hexadecimal data to the destination
word beginning at the specified digit.

An error will occur if the source words contain data which is not an ASCII
equivalent of hexadecimal digits. The following table shows hexadecimal dig-
its and their ASCII equivalents (excluding parity bits).

 3 2 1 0Digit number:

Specifies the first digit in D to receive converted data (0 to 3).

Number of bytes to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

0: Rightmost byte
1: Leftmost byte

Parity 0: None
1: Even
2: Odd

First byte of S to be converted.

Area S Di D

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants --- Specified values
only

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Hexadecimal digits (4 bits) ASCII equivalent (2 hexadecimal digits)

0 to 9 30 to 39

A to F 41 to 46
286

Conversion Instructions Section 3-11
The following diagram shows the basic operation of HEX(162) with Di=0021.

Parity

It is possible to specify the parity of the ASCII data for use in error control dur-
ing data transmissions. The leftmost bit in each byte is the parity bit. With no
parity the parity bit should always be zero, with even parity the status of the
parity bit should result in an even number of ON bits, and with odd parity the
status of the parity bit should result in an odd number of ON bits.

The following table shows the operation of HEX(162) for each parity setting.

Examples of Di

When two or more bytes are being converted, HEX(162) will write the con-
verted digits to the destination word from right to left and will wrap around to
the rightmost digit if necessary. The following diagram shows some example
values for Di and the conversions that they produce.

Parity setting
(leftmost digit of Di)

Operation of HEX(162)

No parity (0) HEX(162) will be executed only when the parity bit in each
byte is 0. An error will occur if a parity bit is non-zero.

Even parity (1) HEX(162) will be executed only when there is an even num-
ber of ON bits in each byte. An error will occur if a byte has
an odd number of ON bits.

Odd parity (2) HEX(162) will be executed only when there is an odd num-
ber of ON bits in each byte. An error will occur if a byte has
an even number of ON bits.

D: 0021

Number of digits (n+1)

Right (0)Left (1)

Di

First digit to write

First byte to convert

Di: #0112 Di: #0030 Di: #0131

Digit 3 Digit 2 Digit 1 Digit 0

Leftmost

Rightmost

Digit 3 Digit 2 Digit 1 Digit 0
Digit 3 Digit 2 Digit 1 Digit 0

Leftmost Rightmost

Leftmost Rightmost

Leftmost

Rightmost

Leftmost Rightmost
287

Conversion Instructions Section 3-11
Flags

Precautions An error will occur and the Error Flag will be turned ON if there is a parity error
in the ASCII data, the ASCII data in the source words is not equivalent to
hexadecimal digits, or the content of Di is not within the specified ranges.

Examples When CIO 0000.00 is ON in the following example, HEX(162) converts the
ASCII data in D00100 and D00101 according to the settings of the digit desig-
nator. (Di=#0121 specifies no parity, the starting byte (when reading) = left-
most byte, the number of bytes to read = 3, and the starting digit (when
writing) = digit 1.)

HEX(162) converts three bytes of ASCII data (3 characters) beginning with
the leftmost byte of D00100 into their hexadecimal equivalents and writes this
data to D00200 beginning with digit 1.

When CIO 0000.00 is ON in the following example, HEX(162) converts the
ASCII data in D00010 beginning with the rightmost byte and writes the hexa-
decimal equivalents in D00300 beginning with digit 1.

The digit designator setting of #1011 specifies even parity, the starting byte
(when reading) = rightmost byte, the number of bytes to read = 2, and the
starting digit (when writing) = digit 1.)

Name Label Operation

Error Flag ER ON if there is a parity error in the ASCII data.

ON if the ASCII data in the source words is not equivalent
to hexadecimal digits
ON if the content of Di is not within the specified ranges.

OFF in all other cases.

S:

D: D00200

S

D

0000.00

Di: #

Number of digits

3 digits

Di

Starting digit (digit 1)

Starting byte
(leftmost byte)
288

Conversion Instructions Section 3-11
S: D00010

D: D00300

0000.00

Di

Number of bytes (2 bytes)

Starting digit (digit 1)

Parity bits: Result in even parity

Not changed

Not changed

Conversion

Parity: Even

Starting byte: rightmost

Starting digit in D: Digit 1
Number of bytes: 2
Starting byte in S: Rightmost
289

Logic Instructions Section 3-12
3-12 Logic Instructions
This section describes instructions which perform logic operations on word
data.

3-12-1 LOGICAL AND: ANDW(034)
Purpose Takes the logical AND of corresponding bits in single words of word data and/

or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Mnemonic Function code Page

LOGICAL AND ANDW 034 290

DOUBLE LOGICAL AND ANDL 610 292

LOGICAL OR ORW 035 293

DOUBLE LOGICAL OR ORWL 611 295

EXCLUSIVE OR XORW 036 297

DOUBLE EXCLUSIVE OR XORL 612 298

EXCLUSIVE NOR XNRW 037 300

DOUBLE EXCLUSIVE NOR XNRL 613 302

COMPLEMENT COM 029 303

DOUBLE COMPLEMENT COML 614 305

ANDW(034)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition ANDW(034)

Executed Once for Upward Differentiation @ANDW(034)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

290

Logic Instructions Section 3-12
Description ANDW(034) takes the logical AND of data specified in I1 and I2 and outputs
the result to R.

• The logical AND is taken of corresponding bits in I1 and I2 in succession.

• When the contents of corresponding bits in both I1 and I2 are 1, a 1 will be
output to the corresponding bit in R. When one or more bits is 0, a 0 will
be output to the corresponding bit in R.

I1, I2 → R

Flags

Precautions When ANDW(034) is executed, the Error Flag will turn OFF.

If as a result of the AND, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the AND, the leftmost bit of R is 1, the Negative Flag will turn
ON.

Examples When the execution condition CIO 0000.00 is ON, the logical AND will be
taken of corresponding bits in CIO 0010 and CIO 0020, and the results will be
output to corresponding bits in D00200.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area I1 I2 R

I1 I2 R

1 1 1

1 0 0

0 1 0

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

0010.00 0

0010.01 1

0010.02 0

0010.03 1

0010.04 0

0010.13 1

0010.14 1

0010.15 0

ANDW

0010

0020

D00200

0000.00 I1: CIO 0010

0020.00 1

0020.01 1

0020.02 0

0020.03 0

0020.04 1

0020.13 1

0020.14 0

0020.15 0

I2: CIO 0020

00 0

01 1

02 0

03 0

04 0

13 1

14 0

15 0

R: D00200

Note: The vertical arrow indicates logical AND.
291

Logic Instructions Section 3-12
3-12-2 DOUBLE LOGICAL AND: ANDL(610)
Purpose Takes the logical AND of corresponding bits in double words of word data and/

or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ANDL(610) takes the logical AND of data specified in I1, I1+1 and I2, I2+1 and
outputs the result to R, R+1.

(I1, I1+1), (I2, I2+1) → (R, R+1)

ANDL(610)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition ANDL(610)

Executed Once for Upward Differentiation @ANDL(610)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 0

0 1 0

0 0 0
292

Logic Instructions Section 3-12
Flags

Precautions When ANDL(610) is executed, the Error Flag will turn OFF.

If as a result of the AND, the content of R, R+1 is 0000 0000 hex, the Equals
Flag will turn ON.

If as a result of the AND, the leftmost bit of R+1 is 1, the Negative Flag will
turn ON.

Examples When the execution condition CIO 0000.00 is ON, the logical AND will be
taken of corresponding bits in CIO 0011, CIO 0010 and CIO 0021, CIO 0020
and the results will be output to corresponding bits in D00201 and D00200.

3-12-3 LOGICAL OR: ORW(035)
Purpose Takes the logical OR of corresponding bits in single words of word data and/or

constants.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000 hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R+1 is 1.

OFF in all other cases.

I1: CIO 0010
I1+1: CIO 0011

I2: CIO 0020
I2+1: CIO 0021

R: D00200
R+1: D00201

0000.00

Note: The vertical arrow indicates logical AND.

ORW(035)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition ORW(035)

Executed Once for Upward Differentiation @ORW(035)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
293

Logic Instructions Section 3-12
Operand Specifications

Description ORW(035) takes the logical OR of data specified in I1 and I2 and outputs the
result to R.

• The logical OR is taken of corresponding bits in I1 and I2 in succession.

• When either one of the corresponding bits in I1 and I2 is 1, a 1 will be out-
put to the corresponding bit in R. When both of them are 0, a 0 will be out-
put to the corresponding bit in R.

I1 + I2 → R

Flags

Precautions When ORW(035) is executed, the Error Flag will turn OFF.

If as a result of the OR, the content of R is 0000 hex, the Equals Flag will turn
ON.

If as a result of the OR, the leftmost bit of R is 1, the Negative Flag will turn
ON.

Examples When the execution condition CIO 0000.00 is ON, the logical OR will be taken
of corresponding bits in CIO 0020 and CIO 0030, and the results will be out-
put to corresponding bits in D00500.

Area I1 I2 R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

I1 I2 R

1 1 1

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
294

Logic Instructions Section 3-12
3-12-4 DOUBLE LOGICAL OR: ORWL(611)
Purpose Takes the logical OR of corresponding bits in double words of word data and/

or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0020.00 1

0020.01 1

0020.02 0

0020.03 0

0020.15 1

ORW

0020

0030

D00500

0000.00 I1: CIO 0020

0030.00 1

0030.01 0

0030.02 1

0030.03 0

0030.15 1

I2: CIO 0030

00 1

01 1

02 1

03 0

15 1

R: D00500

D00500

Note: The vertical arrow indicates logical OR.

ORWL(611)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition ORWL(611)

Executed Once for Upward Differentiation @ORWL(611)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
295

Logic Instructions Section 3-12
Description ORWL(611) takes the logical OR of data specified in I1, I1+1 and I2, I2 +1 as
double-word data and outputs the result to R, R+1.

• When any of the corresponding bits in I1, I1+1, I2, and I2 +1 are 1, a 1 will
be output to the corresponding bit in R, R+1. When both of them are 0, a
0 will be output to the corresponding bit in R, R+1.

(I1, I1+1) + (I2, I2+1) → (R, R+1)

Flags

Precautions When ORWL(611) is executed, the Error Flag will turn OFF.

If as a result of the OR, the content of R, R+1 is 0000 0000 hex, the Equals
Flag will turn ON.

If as a result of the OR, the leftmost bit of R+1 is 1, the Negative Flag will turn
ON.

Examples When the execution condition CIO 0000.00 is ON, the logical OR will be taken
of corresponding bits in CIO 0021, CIO 0020 and CIO 0031, CIO 0030 and
the results will be output to corresponding bits in D00501 and D00500.

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000 hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.

OFF in all other cases.

I1: CIO 0020
I1+1: CIO 0021

I2: CIO 0030
I2+1: CIO 0031

R: D00500
R+1: D00501

0000.00

0030

0031.15

0030.00

0030.01

0030.02

0030.03

0030.15

0031.00

Note: The vertical arrow indicates logical OR.
296

Logic Instructions Section 3-12
3-12-5 EXCLUSIVE OR: XORW(036)
Purpose Takes the logical exclusive OR of corresponding bits in single words of word

data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description XORW(036) takes the logical exclusive OR of data specified in I1 and I2 and
outputs the result to R.

• The logical exclusive OR is taken of corresponding bits in I1 and I2 in suc-
cession.

• When the contents of corresponding bits of I1 and I2 are different, a 1 will
be output to the corresponding bit of R and when they are the same, 0 will
be output to the corresponding bit in R.

XORW(036)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XORW(036)

Executed Once for Upward Differentiation @XORW(036)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
297

Logic Instructions Section 3-12
I1, I2 + I1, I2 → R

Flags

Precautions When XORW(036) is executed, the Error Flag will turn OFF.

If as a result of the OR, the content of R is 0000 hex, the Equals Flag will turn
ON.

If as a result of the OR, the leftmost bit of R is 1, the Negative Flag will turn
ON.

Examples When the execution condition CIO 0000.00 is ON, the logical exclusive OR
will be taken of corresponding bits in CIO 0010 and D01000, and the results
will be output to corresponding bits in D01200.

3-12-6 DOUBLE EXCLUSIVE OR: XORL(612)
Purpose Takes the logical exclusive OR of corresponding bits in double words of word

data and/or constants.

Ladder Symbol

Variations

I1 I2 R

1 1 0

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

0010.00 1

0010.01 1

0010.02 0

0010.03 0

0010.15 1

XORW

0010

D01000

D01200

0000.00 I1: CIO 0010 I2: D01000

00 0

01 1

02 1

03 0

15 0

R: D01200

D0120000 1

01 0

02 1

03 0

15 1

D01000

Note: The symbol indicates logical exclusive OR.

XORL(612)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XORL(612)

Executed Once for Upward Differentiation @XORL(612)

Executed Once for Downward Differentiation Not supported.
298

Logic Instructions Section 3-12
Applicable Program Areas

Operand Specifications

Description XORL(612) takes the logical exclusive OR of data specified in I1, I1+1 and I2,
I2 +1 as double-word data and outputs the result to R, R+1.

• When the contents of any of the corresponding bits in I1, I1+1, I2, and I2 +1
are different, a 1 will be output to the corresponding bit it R, R+1. When
both of them are the same, a 0 will be output to the corresponding bit in R,
R+1.

(I1, I1+1), (I2, I2+1) + (I1, I1+1), (I2, I2+1)→ (R, R+1)

Flags

Precautions When XORL(612) is executed, the Error Flag will turn OFF.

If as a result of the exclusive OR, the content of R, R+1 is 0000 0000 hex, the
Equals Flag will turn ON.

If as a result of the exclusive OR, the leftmost bit of R+1 is 1, the Negative
Flag will turn ON.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

I1, I1+1 I2, I2+1 R, R+1

1 1 0

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000 hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
299

Logic Instructions Section 3-12
Examples When the execution condition CIO 0000.00 is ON, the logical exclusive OR
will be taken of corresponding bits in CIO 0011, CIO 0010 and D01001,
D01000 and the results will be output to corresponding bits in D01201 and
D01200.

3-12-7 EXCLUSIVE NOR: XNRW(037)
Purpose Takes the logical exclusive NOR of corresponding single words of word data

and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

I: CIO 0010
I1+1: CIO 0011

I2: D01000
I2+1: D01001

R: D01200
R+1: D01201

0000.00

0010 0010.00

0010.01

0010.02

0010.03

0010.15

0011.00

0011.15

Note: The symbol indicates logical exclusive OR.

XNRW(037)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XNRW(037)

Executed Once for Upward Differentiation @XNRW(037)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767
300

Logic Instructions Section 3-12
Description XNRW(037) takes the logical exclusive NOR of data specified in I1 and I2 and
outputs the result to R.

• The logical exclusive NOR is taken of corresponding bits in I1 and I2 in
succession.

• When the contents of corresponding bits of I1 and I2 are different, a 0 will
be output to the corresponding bit of R and when they are the same, 1 will
be output to the corresponding bit in R.

I1, I2 + I1, I2 → R

Flags

Precautions When XNRW(037) is executed, the Error Flag will turn OFF.

If as a result of the NOR, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the NOR, the leftmost bit of R is 1, the Negative Flag will turn
ON.

Examples When the execution condition CIO 0000.00 is ON, the logical exclusive NOR
will be taken of corresponding bits in CIO 0010 and CIO 0100, and the results
will be output to corresponding bits in D00500.

Constants #0000 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area I1 I2 R

I1 I2 R

1 1 1

1 0 0

0 1 0

0 0 1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.

OFF in all other cases.

0010.00 1

0010.01 1

0010.02 0

0010.03 0

0010.15 1

XNRW

0010

0100

D00500

0000.00 S1: CIO 0010

0100.00 1

0100.01 0

0100.02 1

0100.03 0

0100.15 1

S2: CIO 0100

00 1

01 0

02 0

03 1

15 1

D: D00500

D00500

Note: The symbol indicates logical exclusive NOR.
301

Logic Instructions Section 3-12
3-12-8 DOUBLE EXCLUSIVE NOR: XNRL(613)
Purpose Takes the logical exclusive NOR of corresponding bits in double words of

word data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description XNRL(613) takes the logical exclusive NOR of data specified in I1, I1+1 and I2,
I2+1 and outputs the result to R, R+1.

• When the contents of any of the corresponding bits in I1, I1+1, I2, and I2 +1
are different, a 0 will be output to the corresponding bit in R, R+1. When
both of them are the same, a 1 will be output to the corresponding bit in R,
R+1.

(I1, I1+1), (I2, I2+1) + (I1, I1+1), (I2, I2+1) → (R, R+1)

XNRL(613)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XNRL(613)

Executed Once for Upward Differentiation @XNRL(613)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0000 to CIO 0254

Work Area W000 toW254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 0
302

Logic Instructions Section 3-12
Flags

Precautions When XNRL(613) is executed, the Error Flag will turn OFF.

If as a result of the exclusive NOR, the content of R, R+1 is 0000 0000 hex,
the Equals Flag will turn ON.

If as a result of the exclusive NOR, the leftmost bit of R+1 is 1, the Negative
Flag will turn ON.

Examples When the execution condition CIO 0000.00 is ON, the logical exclusive NOR
will be taken of corresponding bits in CIO 0011, CIO 0010, and CIO 0101,
CIO 0100 and the results will be output to corresponding bits in D00501 and
D00500.

3-12-9 COMPLEMENT: COM(029)
Purpose Turns OFF all ON bits and turns ON all OFF bits in Wd.

Ladder Symbol

Variations

Applicable Program Areas

0 1 0

0 0 1

I1, I1+1 I2, I2+1 R, R+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000 hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R+1 is 1.
OFF in all other cases.

I1: CIO 0010
I1+1: CIO 0011

I2: CIO 0100
I2+1: CIO 0101

R: D00500
R+1: D00501

0000.00

0010
0010.00

0010.01

0010.02

0010.03

0010.15

0011.00

0011.15

Note: The symbol indicates logical exclusive NOR.

COM(029)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition COM(029)

Executed Once for Upward Differentiation @COM(029)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
303

Logic Instructions Section 3-12
Operand Specifications

Description COM(029) reverses the status of every bit in the specified word.
Wd→Wd: 1 → 0 and 0 → 1

Note When using the COM instruction, be aware that the status of each bit will
change each cycle in which the execution condition is ON.

Flags

Precautions When COM(029) is executed, the Error Flag will turn OFF.

If as a result of COM, the content of R is 0000 hex, the Equals Flag will turn
ON.

If as a result of COM, the leftmost bit of R is 1, the Negative Flag will turn ON.

Examples When CIO 0000.00 is ON in the following example, the status of each bit in
D00100 will be reversed.

Area Wd

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.

OFF in all other cases.

0000.00
304

Logic Instructions Section 3-12
3-12-10 DOUBLE COMPLEMENT: COML(614)
Purpose Turns OFF all ON bits and turns ON all OFF bits in Wd and Wd+1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description COML(614) reverses the status of every bit in Wd and Wd+1.
(Wd+1, Wd)→(Wd+1, Wd)

Note When using the COML instruction, be aware that the status of each bit will
change each cycle in which the execution condition is ON.

Flags

Precautions When COML(614) is executed, the Error Flag will turn OFF.

If as a result of COML, the content of R, R+1 is 0000 0000 hex, the Equals
Flag will turn ON.

COML(614)

Wd Wd: 1st word

Variations Executed Each Cycle for ON Condition COML(614)

Executed Once for Upward Differentiation @COML(614)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0000 0000 hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R+1 is 1.
OFF in all other cases.
305

Special Math Instructions Section 3-13
If as a result of COML, the leftmost bit of R+1 is 1, the Negative Flag will turn
ON.

Examples When CIO 0000.00 is ON in the following example, the status of each bit in
D00100 and D00101 will be reversed.

3-13 Special Math Instructions
This section describes instructions used for special math calculations.

3-13-1 ARITHMETIC PROCESS: APR(069)
Purpose Calculates the linear extrapolation of the source data (16-bit or 32-bit binary).

The linear extrapolation function allows any relationship between X and Y to
be approximated with line segments.

The high-speed counter PV can be used directly as input data.

With the Motion Control Modules, the linear extrapolation data table can be
transferred to the high-speed buffer so the linear extrapolation calculations
can be processed at high speed.

Ladder Symbol

Variations

Applicable Program Areas

Operands

D00100

D00100

D00101

D00101

Instruction Mnemonic Function code Page

ARITHMETIC PROCESS APR 069 306

BIT COUNTER BCNT 067 313

VIRTUAL AXIS AXIS 981 314

APR(069)

T

S

R

T: First word of linear extrapolation data table

S: Source data

R: Result word

Variations Executed Each Cycle for ON Condition APR(069)

Executed Once for Upward Differentiation @APR(069)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Operand Value Data range

T Data area address --- (See note.)
306

Special Math Instructions Section 3-13
Note T is the first word of the range containing the linear extrapolation data table
(binary).

Operand Specifications

Operand Description
(Table Words)

The following diagrams show the structure of the linear extrapolation data
table for the various data formats.

Unsigned Integer Data (Binary)

S 16-bit unsigned binary data 0000 to 65,535

16-bit signed binary data −32,768 to 32,767

32-bit signed binary data −2,147,483,648 to 2,147,483,647

R 32-bit unsigned binary data 00000000 to 4,294,967,295

16-bit signed binary data −32,768 to 32,767

32-bit signed binary data −2,147,483,648 to 2,147,483,647

Operand Value Data range

Area T S R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants Specified values only ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

T 1

314 13 12 11 910 8 7 6 5 4 2 115 0

000 0 0 00

Number of coordinates minus one (m-1),
01 to FF hex (2 ≤ m ≤ 256)

Source data specifier
00: Data contained in word address S
01: High-speed counter 1 PV
10: High-speed counter 2 PV

Sign indicator for S and D
0: Unsigned data
307

Special Math Instructions Section 3-13
Signed Integer Data (Binary)

High-speed Buffer Transfer of Extrapolation Table
(FQM1-MMP21 and FQM1-MMA21 Only)

High-speed Buffer Linear Extrapolation Calculation
(FQM1-MMP21 and FQM1-MMA21 Only)

T 1

314 13 12 11 910 8 7 6 5 4 2 115 0

0 10 0 0 0

Number of coordinates minus one (m-1),
01 to FF hex (2 ≤ m ≤ 256)

Source data specifier
00: Data contained in word address S

Sign indicator for S and D
1: Signed data

Data length specifier (when S contains signed word data)
0: 16-bit signed binary data
1: 32-bit signed binary data

T 11 1

314 13 12 11 910 8 7 6 5 4 2 115 0

Source data (S) specifier

Sign indicator for S and D

Data length specifier (when S contains signed word data)
0: 16-bit signed binary data
1: 32-bit signed binary data

High-speed buffer specifier
0: Buffer 1
1: Buffer 2

Transfer high-speed buffer (1)

High-speed buffer linear extrapolation calculation

Number of coordinates minus one (m-1),
01 to FF hex (2 ≤ m ≤ 256)

T 11 0 0

314 13 12 11 910 8 7 6 5 4 2 115 0

Always 0
High-speed buffer
specifier
0: Buffer 1
1: Buffer 2

Do not transfer high-speed buffer (0)

High-speed buffer linear extrapolation calculation (1)
308

Special Math Instructions Section 3-13
Note The X coordinates must be in ascending order: X1 < X2 < ... < Xm. Input all
values of (Xn, Yn) as binary data, regardless of the data format specified in
control word T.

Description of the Linear
Extrapolation Function

APR(069) processes the input data specified in S with the following equation
and the line-segment data (Xn, Yn) specified in the table beginning at T+1.
The result is output to the destination word(s) specified with D.

1. For S < X0
Converted value = Y0

2. For X0 ≤ S ≤ Xmax, if Xn < S < Xn+1
Converted value = Yn +[{Yn + 1 − Yn}/{Xn + 1 − Xn}] × [Input data S − Xn}

T+1

T+2

T+3

T+4

T+5

T+6

T+ (2n+1)

T+ (2n+2)

T+ (2m+1)

T+ (2m+2)

X0

Y0

X1

Y1

X2

Y2

Xn

Yn

Xm

Ym

T+1

T+2

T+3

T+4

T+5

T+6

T+ (3m+1)

T+ (3m+2)

T+ (3m+3)

T+1

T+2

T+3

T+4

T+5

T+6

T+7

T+8

T+ (4n+1)

T+ (4n+2)

T+ (4n+3)

T+ (4n+4)

T+ (4m+1)

T+ (4m+2)

T+ (4m+3)

T+ (4m+4)

Unsigned integer data 16-bit signed binary data 32-bit signed binary data

Xm (Max. X value)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xm (16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

X0 (rightmost 16 bits)

X0 (leftmost 16 bits)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (rightmost 16 bits)

X1 (leftmost 16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xn (rightmost 16 bits)

Xn (leftmost 16 bits)

Yn (rightmost 16 bits)

Yn (leftmost 16 bits)

to

Xm (rightmost 16 bits)

Xm (leftmost 16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

to

to

to

to to

to

Y0

X0

A B C

Y (Binary data)

Ymax

Xmax X (Binary data)
309

Special Math Instructions Section 3-13
3. Xmax < S
Converted value = Ymax

Up to 256 endpoints can be stored in the line-segment data table beginning at
T+1. The following 3 kinds of I/O data can be used:

• 16-bit unsigned binary input data/32-bit unsigned binary output data

• 16-bit signed binary I/O data

• 32-bit signed binary I/O data

Flags

• An error will occur and the ER Flag will be turned ON if the X coordinates
are not in ascending order (X1 < X2 < ... < Xm).

Yn

Yn+1

Xn Xn+1

S−Xn

Xn+1−Xn

Yn+1−Yn

f(Y)=
Yn+1−Yn

Xn+1−Xn
Yn+ (S−Xn)

Y (binary data)

S

D

X0

Y0

Calculation
result

X (binary data)

Input data

Name Label Operation

Error Flag ER ON if the X coordinates in the table starting at T are not in
ascending order (X1 ≤ X2 ≤ ... ≤ Xm).

ON if bits 9 and 8 of T are not 00, 01 or 10.

ON if there is an error in the linear extrapolation data table
starting at T.
ON if the linear extrapolation calculation’s source data is
not within the defined graph.
ON if APR(069) is being used in a Coordinator Module
and the source data is set to high-speed counter data.
ON if APR(069) is being used in a Coordinator Module
and high-speed buffer linear extrapolation is selected.

OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of D is ON.
OFF in all other cases.
310

Special Math Instructions Section 3-13
• The Equals Flag will be turned ON if the calculation result in D or D and
D+1 is 0, as shown in the following table.)

• The N Flag will be turned ON if the most significant bit of the calculation
result (D or D and D+1) is 1.

Examples Linear Extrapolation Using 16-bit Unsigned Binary Data

APR(069) processes the input data specified in S based on the control data in
T and the line-segment data specified in the table beginning at T+1. The
result is output to D.

The following table shows the control data in T.

Note Bit 13 determines the processing of source data S.
When bit 13 is 0, the source data in S is used as the input data.
When bit 13 is 1, the source data is subtracted from the maximum X value
and that result (Xm–S) is used as the input data. Use this method when the
extrapolation data table is based on the Y-axis instead of the X-axis.

• Yn = f(Xn), Y0 = f(X0)

• Be sure that Xn–1 < Xn in all cases.

• Input all values of (Xn, Yn) as binary data.

This example shows how to construct a linear extrapolation with 12 coordi-
nates. The block of data is continuous, as it must be, from D00000 to D0039

Data format Content of D (or

Unsigned 16-bit data 0000 0000 hex

Signed 16-bit data 0000 hex

Signed 32-bit data 0000 0000 hex

Bit Setting name Setting

15 High-speed buffer calculation specifier 0: Normal
1: High-speed buffer

14 Linear approximation data table to
high-speed buffer transfer

0: Do not transfer
1: Transfer

13 High-speed buffer specifier
(See note.)

0: Buffer 1
1: Buffer 2

12 --- 1

08 to 11 --- 0000

00 to 07 m-1 (m is the number of coordinates.)

Word Coordinate

T+1 Xm (max. X value)

T+2 Y0 (rightmost 16 bits)

T+3 Y0 (leftmost 16 bits)

T+4 X1

T+5 Y1 (rightmost 16 bits)

T+6 Y1 (leftmost 16 bits)

 ↓ ↓
T+(3m+1) Xm

T+(3m+2) Ym (rightmost 16 bits)

T+(3m+3) Ym (leftmost 16 bits)

Y0

Y2

Y1

Y3

Y4

Ym

X0 X1 X2 X3 X4 Xm

X

Y

311

Special Math Instructions Section 3-13
(T to T + (3 × 12 + 3)). The input data is taken from CIO 0010, and the result is
output to CIO 0011 and CIO 0011.

In this case, the source word, CIO 0010, contains 0014, and f(0014) =
004E 74DF is output to D and D+1, CIO 0011 and CIO 0011.

The linear-extrapolation calculation is shown below.

0000.00

D00000

0010

0011

LSBMSB

0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

D00000 100C

D00001 05F0

D00002 0000

D00003 0000

D00004 0005

D00005 0F00

D00006 00ED

D00007 001A

D00008 0402

D00009 000F

D00037 05F0

D00038 1F20

D00039 01F0

X12

Y0 Lower 16 bits

Y0 Upper 16 bits

X1

Y1 Lower 16 bits

Y1 Upper 16 bits

X2

Y2 Lower 16 bits

Y2 Upper 16 bits

X12

Y12 Lower 16 bits

Y12 Upper 16 bits

Set to 0.

Normal calculation

13 (line segments) − 1

X

Y

01F01F20

00ED0F00

004E74DF

000F0402

(0,0)
0005 0014 001A 05F0

(x,y)

1 40 0

S: CIO 0010

D F7 4 4 E0 0

D: CIO 0011 D+1: CIO 0012

Values are all hexadecimal (Hex).

Y 00ED0F00
000F0402 00ED0F00–

001A 0005–
-- 0014 0005–()×+=

004E74DF=

00ED0F00 A92CF 000F)×(–=
312

Special Math Instructions Section 3-13
3-13-2 BIT COUNTER: BCNT(067)
Purpose Counts the total number of ON bits in the specified word(s).

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of words

The number of words must be 0001 to FFFF (1 to 65,535 words).

S: First source word

S and S+(N–1) must be in the same data area.

Operand Specifications

Description BCNT(067) counts the total number of bits that are ON in all words between S
and S+(N–1) and places the result in R.

BCNT(067)

N

S

R

N: Number of words

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition BCNT(067)

Executed Once for Upward Differentiation @BCNT(067)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N S R

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649 A448 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0001 to #FFFF
(binary) or &1 to
&65,535

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
313

Special Math Instructions Section 3-13
Flags

Precautions An error will occur if N=0000 or the result exceeds FFFF.

Example When CIO 0000.00 is ON in the following example, BCNT(067) counts the
total number of ON bits in the 10 words from CIO 0100 through CIO 0109 and
writes the result to D00100.

3-13-3 VIRTUAL AXIS: AXIS(981)
Purpose Generates a virtual pulse output with trapezoidal acceleration/deceleration.

The operands for AXIS(981) are a target position specified in pulses or as an
absolute position, and a target speed specified in pulses/s (Hz). While the
input condition is ON, AXIS(981) internally generates the specified number of
pulses and integrates (counts) the number of pulses (area) in the trapezoid.

Ladder Symbol

Variations

Applicable Program Areas

S+(N–1)

R

to

N words

Binary result

Counts the number
of ON bits.

Name Label Operation

Error Flag ER ON if N is 0000.

ON if result exceeds FFFF.
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

R:D00100

0000.00

&10

D100

D00100

N
S
R

BCNT

to to

Counts the number
of ON bits (35).

23 hexadecimal
(35 decimal)

10 words

AXIS(981)

M

C

T

M: Mode specifier

C: Calculation cycle

T: First word of setting table

Variations Executed Each Cycle for ON Condition AXIS(981)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
314

Special Math Instructions Section 3-13
Operands M: Mode specifier

#0000: Relative mode
#0001: Absolute mode

C: Calculation cycle

#0000: 2 ms calculation cycle
#0001: 1 ms calculation cycle
#0002: 0.5 ms calculation cycle

T: First Word of Setting Table

Description • Use the AXIS instruction with an input condition that is ON for one cycle.
AXIS cannot be used as a differentiated instruction (the @ prefix is not
supported).

• AXIS is executed at the rising edge of the input condition. If the input
remains ON, the virtual pulse output continues until the target position is
reached. Once the target position is reached, the virtual pulse output is
stopped. If the input condition goes OFF during the virtual pulse output,
the output stops at that point.

• The AXIS instruction’s mode specifier operand (M) specifies whether the
virtual pulse output operates in relative or absolute mode.

• In relative mode, the internal pulse counter initializes the internal pulse
count to 0 when AXIS is executed and starts incrementing from 0.

Address Name Description Setting range Set/
monitored

T Internal pulse count
(8-digit hexadecimal)

The present value of internal
pulse counter is stored here.

Relative mode:
0000 0000 to FFFF FFFF
Absolute mode:
8000 0000 to 7FFF FFFF

Monitored
(Read)T+1

T+2 Bit 15 Virtual pulse output
status

Indicates whether or not the vir-
tual pulse output has started.

OFF: Pulse output stopped
ON: Pulse being output

Bit 08 Indicates the direction of virtual
pulse currently being output.

OFF: CW
ON: CCW

Bit 07 Indicates whether or not the vir-
tual pulse output is being
counted internally.

OFF: Pulse being counted
ON: Target position reached

(Counting stopped)

Bit 00 Indicates whether or not the vir-
tual pulse output is accelerat-
ing/decelerating.

OFF: Constant speed
ON: Accelerating/decelerating

T+3 to T+4 Present speed
(8-digit hexadecimal)

The frequency of the virtual
pulse output is stored here.

0000 0000 to 000F 4240 hex
(0 to 1 MHz in 1-Hz units)

T+5 to T+6 Target position
(8-digit hexadecimal)

Set the number of virtual output
pulses here.

Relative mode:
0000 0000 to FFFF FFFF

Absolute mode:
8000 0000 to 7FFF FFFF

Set
(Read/
Write)

T+7 to T+8 Target frequency
(8-digit hexadecimal)

Set the target frequency of vir-
tual pulses here.

0000 0001 to 000F 4240 hex

(1 to 1 MHz in 1-Hz units)

T+9 to T+10 Starting frequency
(8-digit hexadecimal)

Set the starting frequency of vir-
tual pulses here.

0000 0000 to 000F 4240 hex

(0 to 1 MHz in 1-Hz units)

T+11 Acceleration rate
(4-digit hexadecimal)

Set the acceleration rate of vir-
tual pulses here.

0001 to 270F
(1 to 9,999 Hz, in 1-Hz units)

T+12 Deceleration rate
(4-digit hexadecimal)

Set the deceleration rate of vir-
tual pulses here.

0001 to 270F
(1 to 9,999 Hz, in 1-Hz units)

T+13 to T+26 Work area Used by the system. ---
315

Special Math Instructions Section 3-13
• In absolute mode, the internal pulse counter retains the internal pulse
count when AXIS is executed and starts incrementing or decrementing
from that existing pulse count.

• The internal pulse counts are refreshed every cycle at the interval speci-
fied in the calculation cycle (2 ms, 1 ms, or 0.5 ms) with a constant execu-
tion cycle. If the specified calculation cycle time does not match the
execution cycle time, the time difference between the cycles can cause an
error in the count. If highly accurate pulse counts are required, use the
constant cycle time function and match the execution cycle time and cal-
culation cycle time. (Set the constant cycle time in the System Setup’s
Cycle Time Tab Page.)

• When trapezoidal control cannot be performed with the specified target
position, target frequency, and acceleration/deceleration, AXIS will auto-
matically compensate as follows:

The acceleration and deceleration rates will be set to the same rate
(symmetrical trapezoidal control).

OR

When one-half of the specified target pulses have been output, AXIS
will start decelerating at the specified acceleration rate (symmetrical
triangular control).

Note When the AXIS instruction’s input condition goes OFF, the contents of setting
table words T+2 to T+4 will be initialized to 0.

Operand Specifications

Flags

Area M C T

CIO Area --- CIO 0000 to
CIO 0229

Work Area --- W000 to W229

Auxiliary Bit Area --- A000 to A623

Timer Area --- T0000 to T0229

Counter Area --- C0000 to C0229

DM Area --- D00000 to
D32741

Indirect DM addresses
in binary

--- @ D00000 to
@ D32767

Indirect DM addresses
in BCD

--- *D00000 to
*D32767

Constants Specified values only ---

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 or ,IR1
–2048 to +2047
,IR0 or –2048 to
+2047 ,IR1
,IR0+(++) or
,IR1+(++)

, –(– –)IR0 or, –(–
–)IR1

Name Label Operation

Error Flag ER ON if the settings for the target frequency, starting fre-
quency, and acceleration/deceleration rate are inconsis-
tent.
OFF in all other cases.
316

Floating-point Math Instructions Section 3-14
Example Positioning or Speed Control on a Virtual Axis

The internal pulse count can be treated as a virtual axis position in order to
perform electronic cam operation on that virtual axis position with simple lin-
ear approximation.

First, the AXIS instruction is executed to generate an internal pulse count. The
internal pulse count is read at every cycle, that pulse count is processed with
basic arithmetic operations or the APR instruction, and the result is used as a
target position or target speed in the PULS(886) instruction. The PULS(886)
instruction (in electronic cam control) is executed immediately after the target
position or speed is calculated.

Simple locus control can be performed by executing electronic cam control
simultaneously on virtual axes for both pulse outputs 1 and 2.

3-14 Floating-point Math Instructions

Pulse count
(Virtual pulses)

Execution each cycle
(Constant cycle time)

Pulse output PV (normal pulse output)

Time

Execution of PULS
(Changes target position
and speed.)

Target position
PULS (Electronic Cam
Mode) is executed in the
program to change target
position and speed.

Time

Internal pulse frequency
(Speed command)

Pulses generated
by AXIS

Target frequency
(Hz)

Time

Instruction Mnemonic Function code Page

FLOATING TO 32-BIT FIXL 451 323

32-BIT TO FLOATING FLTL 453 325

FLOATING-POINT ADD +F 454 326

FLOATING-POINT SUB-
TRACT

–F 455 328

FLOATING-POINT MULTI-
PLY

*F 456 330

FLOATING-POINT DIVIDE /F 457 331

DEGREES TO RADIANS RAD 458 333

RADIANS-TO-DEGREES DEG 459 335

SINE SIN 460 336

COSINE COS 461 338

TANGENT TAN 462 339

ARC SINE ASIN 463 341

ARC COSINE ACOS 464 343

ARC TANGENT ATAN 465 344

SQUARE ROOT SQRT 466 346

EXPONENT EXP 467 348
317

Floating-point Math Instructions Section 3-14
The following floating-point comparison instructions are supported in addition
to the instructions listed above.

Data Format Floating-point data expresses real numbers using a sign, exponent, and man-
tissa. When data is expressed in floating-point format, the following formula
applies.

Real number = (–1)s 2e–127 (1.f)

s: Sign
e: Exponent
f: Mantissa

The floating-point data format conforms to the IEEE754 standards. Data is
expressed in 32 bits, as follows:

Number of Digits The number of effective digits for floating-point data is 24 bits for binary
(approximately seven digits decimal).

Floating-point Data The following data can be expressed by floating-point data:

• –∞

• –3.402823 × 1038 ≤ value ≤ –1.175494 × 10–38

• 0

• 1.175494 × 10–38 ≤ value ≤ 3.402823 × 1038

• +∞
• Not a number (NaN)

LOGARITHM LOG 468 350

EXPONENTIAL POWER PWR 840 351

Instruction Mnemonic Function code Page

Instruction Mnemonic Function code Page

Single-precision Floating-
point Symbol Comparison
Instructions

LD, AND, OR
+
=F, <>F, <F, <=F, >F,
or >=F

329 to 334 353

Data No. of bits Contents

s: sign 1 0: positive; 1: negative

e: exponent 8 The exponent (e) value ranges from 0 to 255.
The actual exponent is the value remaining after
127 is subtracted from e, resulting in a range of –
127 to 128. “e=0” and “e=255” express special
numbers.

f: mantissa 23 The mantissa portion of binary floating-point
data fits the formal 2.0 > 1.f ≥1.0.

s e f

31 30 23 22 0

Sign Exponent Mantissa

−1.175494 × 10–38 1.175494 × 10–38

– ∞ +–3.402823 × 1038 3.402823 × 1038–1 0 1 ∞
318

Floating-point Math Instructions Section 3-14
Special Numbers The formats for NaN, ±∞, and 0 are as follows:

NaN*: e = 255, f ≠ 0
+∞: e = 255, f = 0, s= 0
–∞: e = 255, f = 0, s= 1
0: e = 0

*NaN (not a number) is not a valid floating-point number. Executing floating-
point calculation instructions will not result in NaN.

Writing Floating-point
Data

When floating-point is specified for the data format in the I/O memory edit dis-
play in the CX-Programmer, standard decimal numbers input in the display
are automatically converted to the floating-point format shown above
(IEEE754-format) and written to I/O Memory. Data written in the IEEE754-for-
mat is automatically converted to standard decimal format when monitored on
the display.

It is not necessary for the user to be aware of the IEEE754 data format when
reading and writing floating-point data. It is only necessary to remember that
floating point values occupy two words each.

Numbers Expressed as Floating-point Values
The following types of floating-point numbers can be used.

Note A non-normalized number is one whose absolute value is too small to be
expressed as a normalized number. Non-normalized numbers have fewer sig-
nificant digits. If the result of calculations is a non-normalized number (includ-
ing intermediate results), the number of significant digits will be reduced.

Normalized Numbers Normalized numbers express real numbers. The sign bit will be 0 for a positive
number and 1 for a negative number.

The exponent (e) will be expressed from 1 to 254, and the real exponent will
be 127 less, i.e., –126 to 127.

The mantissa (f) will be expressed from 0 to 223 – 1, and it is assume that, in
the real mantissa, bit 223 is 1 and the binary point follows immediately after it.

Normalized numbers are expressed as follows:

(–1)(sign s) × 2(exponent e)–127 × (1 + mantissa × 2–23)

Example

Sign: –
Exponent: 128 – 127 = 1
Mantissa: 1 + (222 + 221) x 2–23 = 1 + (2–1 + 2–2) = 1 + 0.75 = 1.75
Value: –1.75 × 21 = –3.5

15

n+1

n
7 0

f

s e

6

Mantissa (f) Exponent (e)

0 Not 0 and
not all 1’s

All 1’s (255)

0 0 Normalized number Infinity

Not 0 Non-normalized
number

NaN

1 1 0 0 0 0 0 0 0 0 1 1 0

31 30 23 22 0
319

Floating-point Math Instructions Section 3-14
Non-normalized Numbers Non-normalized numbers express real numbers with very small absolute val-
ues. The sign bit will be 0 for a positive number and 1 for a negative number.

The exponent (e) will be 0, and the real exponent will be –126.

The mantissa (f) will be expressed from 1 to 223 – 1, and it is assume that, in
the real mantissa, bit 223 is 0 and the binary point follows immediately after it.

Non-normalized numbers are expressed as follows:

(–1)(sign s) x 2–126 x (mantissa x 2–23)

Example

Sign: +
Exponent: –126
Mantissa: 0 + (222 + 221) × 2–23 = 0 + (2–1 + 2–2) = 0 + 0.75 = 0.75
Value: 0.75 × 2–126

Zero Values of +0.0 and –0.0 can be expressed by setting the sign to 0 for positive
or 1 for negative. The exponent and mantissa will both be 0. Both +0.0 and
–0.0 are equivalent to 0.0. Refer to Floating-point Arithmetic Results, below,
for differences produced by the sign of 0.0.

Infinity Values of +∞ and –∞ can be expressed by setting the sign to 0 for positive or 1
for negative. The exponent will be 255 (28 – 1) and the mantissa will be 0.

NaN NaN (not a number) is produced when the result of calculations, such as 0.0/
0.0, ∞/∞, or ∞–∞, does not correspond to a number or infinity. The exponent
will be 255 (28 – 1) and the mantissa will be not 0.

Note There are no specifications for the sign of NaN or the value of the mantissa
field (other than to be not 0).

Floating-point Arithmetic Results

Rounding Results The following methods will be used to round results when the number of digits
in the accurate result of floating-point arithmetic exceeds the significant digits
of internal processing expressions.

If the result is close to one of two internal floating-point expressions, the
closer expression will be used. If the result is midway between two internal
floating-point expressions, the result will be rounded so that the last digit of
the mantissa is 0.

Overflows, Underflows,
and Illegal Calculations

Overflows will be output as either positive or negative infinity, depending on
the sign of the result. Underflows will be output as either positive or negative
zero, depending on the sign of the result.

Illegal calculations will result in NaN. Illegal calculations include adding infinity
to a number with the opposite sign, subtracting infinity from a number with the
same sign, multiplying zero and infinity, dividing zero by zero, or dividing infin-
ity by infinity.

The value of the result may not be correct if an overflow occurs when convert-
ing a floating-point number to an integer.

Precautions in Handling
Special Values

The following precautions apply to handling zero, infinity, and NaN.

• The sum of positive zero and negative zero is positive zero.

• The difference between zeros of the same sign is positive zero.

• If any operand is a NaN, the results will be a NaN.

• Positive zero and negative zero are treated as equivalent in comparisons.

0 0 0 0 0 0 0 0 0 0 1 1 0

31 30 23 22 0
320

Floating-point Math Instructions Section 3-14
• Comparison or equivalency tests on one or more NaN will always be true
for != and always be false for all other instructions.

Floating-point Calculation Results
When the absolute value of the result is greater than the maximum value that
can be expressed for floating-point data, the Overflow Flag will turn ON and
the result will be output as ±∞. If the result is positive, it will be output as +∞; if
negative, then –∞.

The Equals Flag will only turn ON when both the exponent (e) and the man-
tissa (f) are zero after a calculation. A calculation result will also be output as
zero when the absolute value of the result is less than the minimum value that
can be expressed for floating-point data. In that case the Underflow Flag will
turn ON.

Example In this program example, the X-axis and Y-axis coordinates (x, y) are provided
by 8-digit BCD content of D00000, D00001 and D00002, D00003. The dis-
tance (r) from the origin and the angle (θ, in degrees) are found and output to
D00100, D00101 and D00102, D00103. In the result, everything to the right of
the decimal point is truncated.

0

y

x

P (100, 100)

r

θ

321

Floating-point Math Instructions Section 3-14
(2)

(3)

(4)

(1)
D00000
D00200

D00002
D00202

D00202
D00206

D00204
D00204
D00208

D00206
D00206
D00210

D00208
D00210
D00212

D00212
D00214

D00206
D00204
D00216

D00216
D00218

D00218
D00220

D00214
D00222

D00220
D00224

D00222
D00100

D00224
D00102

D00200
D00204

0000.00
BINL

BINL

FLTL

FLTL

FIXL

FIXL

BCDL

BCDL
322

Floating-point Math Instructions Section 3-14
1. This section of the program converts the data from BCD to floating-point.

a) The data area from D00200 onwards is used as a work area.

b) First BINL(058) is used to temporarily convert the BCD data to binary
data, and then FLTL(453) is used to convert the binary data to floating-
point data.

c) The value of x that has been converted to floating-point data is output
to D00205 and D00204.

d) The value of y that has been converted to floating-point data is output
to D00207 and D00206.

2. In order to find the distance r, Floating-point Math Instructions are used to

calculate the square root of x2+y2. The result is then output to D00215 and
D00214 as floating-point data.

3. In order to find the angle θ, Floating-point Math Instructions are used to

calculate tan–1 (y/x). ATAN(465) outputs the result in radians, so DEG(459)
is used to convert to degrees. The result is then output to D00221 and
D00220 as floating-point data.

4. The data is converted back from floating-point to BCD.

a) First FIXL(451) is used to temporarily convert the floating-point data to
binary data, and then BCDL(059) is used to convert the binary data to
BCD data.

b) The distance r is output to D00101 and D00100 in BCD.

c) The angle θ is output to D00103 and D00102 in BCD.

3-14-1 FLOATING TO 32-BIT: FIXL(451)
Purpose Converts a 32-bit floating-point value to 32-bit signed binary data and places

the result in the specified result words.

Ladder Symbol

Variations

DM Contents

D00000 #0100

D00002 #0100

x

y

D00100 0 1 4 1

D00102 0 0 4 5

r

(BCD)

(BCD)

(BCD)

(BCD)
θ

100
100

Calculations

Distance r = √x2 + y2

Angle θ = tan-1 (y
x)

Example

Distance r = √1002 + 1002 = 141.4214

Angle θ = tan-1 () = 45.0

FIXL(451)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition FIXL(451)

Executed Once for Upward Differentiation @FIXL(451)

Executed Once for Downward Differentiation Not supported.
323

Floating-point Math Instructions Section 3-14
Applicable Program Areas

Operand Specifications

Description FIXL(451) converts the integer portion of the 32-bit floating-point number in
S+1 and S (IEEE754-format) to 32-bit signed binary data and places the
result in R+1 and R.

Only the integer portion of the floating-point data is converted, and the fraction
portion is truncated. (The integer portion of the floating-point data must be
within the range of –2,147,483,648 to 2,147,483,647.)

Example conversions:
A floating-point value of 2,147,483,640.5 is converted to 2,147,483,640.
A floating-point value of –2,147,483,640.5 is converted to –2,147,483,640.

Flags

Precautions The content of S+1 and S must be floating-point data and the integer portion
must be in the range of –2,147,483,648 to 2,147,483,647.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

S+1 S

R+1 R

Floating-point data (32 bits)

Signed binary data (32 bits)

Name Label Operation

Error Flag ER ON if the data in S+1 and S is not a number (NaN).
ON if the integer portion of S+1 and S is not within the
range of –2,147,483,648 to 2,147,483,647.

OFF in all other cases.

Equals Flag = ON if the result is 0000 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 of R+1 is ON after execution.
OFF in all other cases.
324

Floating-point Math Instructions Section 3-14
3-14-2 32-BIT TO FLOATING: FLTL(453)
Purpose Converts a 32-bit signed binary value to 32-bit floating-point data and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description FLTL(453) converts the 32-bit signed binary value in S+1 and S to 32-bit float-
ing-point data (IEEE754-format) and places the result in R+1 and R. A single
0 is added after the decimal point in the floating-point result.

Signed binary data within the range of –2,147,483,648 to 2,147,483,647 can
be specified for S+1 and S. The floating point value has 24 significant binary
digits (bits). The result will not be exact if a number greater than 16,777,215
(the maximum value that can be expressed in 24-bits) is converted by
FLTL(453).

FLTL(453)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition FLTL(453)

Executed Once for Upward Differentiation @FLTL(453)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

R+1 R

SS+1

Floating-point data (32 bits)

Signed binary data (32 bits)
325

Floating-point Math Instructions Section 3-14
Example Conversions:
A signed binary value of 16,777,215 is converted to 16,777,215.0.
A signed binary value of –16,777,215 is converted to –16,777,215.0.

Flags

Precautions The result will not be exact if a number with an absolute value greater than
16,777,215 (the maximum value that can be expressed in 24-bits) is con-
verted.

3-14-3 FLOATING-POINT ADD: +F(454)
Purpose Adds two 32-bit floating-point numbers and places the result in the specified

result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Negative Flag N ON if the result is negative.
OFF in all other cases.

+F(454)

R

Au

Ad

Au: First augend word

AD: First addend word

R: First result word

Variations Executed Each Cycle for ON Condition +F(454)

Executed Once for Upward Differentiation @+F(454)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

326

Floating-point Math Instructions Section 3-14
Description +F(454) adds the 32-bit floating-point number in Ad+1 and Ad to the 32-bit
floating-point number in Au+1 and Au and places the result in R+1 and R.
(The floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of augend and addend data will produce the results
shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. The Error Flag will be turned ON and the instruction will not be executed.

Flags

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area Au Ad R

Augend

Addend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞ ---

Numeral Numeral See note 1. +∞ –∞ ---

+∞ +∞ +∞ +∞ See note 2. ---

–∞ –∞ –∞ See note 2. –∞ ---

NaN --- See note 2.

R+1 R

+

AuAu+1

AdAd+1

Result (floating-point data, 32 bits)

Augend (floating-point data, 32 bits)

Addend (floating-point data, 32 bits)

Name Label Operation

Error Flag ER ON if the augend or addend data is not recognized as
floating-point data.
ON if the augend or addend data is not a number (NaN).

ON if +∞ and –∞ are added.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
327

Floating-point Math Instructions Section 3-14
Precautions The augend (Au+1 and Au) and Addend (Ad+1 and Ad) data must be in
IEEE754 floating-point data format.

3-14-4 FLOATING-POINT SUBTRACT: –F(455)
Purpose Subtracts one 32-bit floating-point number from another and places the result

in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description –F(455) subtracts the 32-bit floating-point number in Su+1 and Su from the
32-bit floating-point number in Mi+1 and Mi and places the result in R+1 and
R. (The floating point data must be in IEEE754 format.)

–F(455)

R

Mi

Su

Mi: First Minuend word

Su: First Subtrahend word

R: First result word

Variations Executed Each Cycle for ON Condition –F(455)

Executed Once for Upward Differentiation @–F(455)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1
328

Floating-point Math Instructions Section 3-14
If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of minuend and subtrahend data will produce the
results shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Minuend (Mi+1 and Mi) and Subtrahend (Su+1 and Su) data must be in
IEEE754 floating-point data format.

Minuend

Subtrahend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞ ---

Numeral Numeral See note 1. +∞ –∞ ---

+∞ –∞ –∞ See note 2. –∞ ---

–∞ +∞ +∞ +∞ See note 2. ---

NaN --- See note 2.

R+1 R

–

MiMi+1

SuSu+1

Result (floating-point data, 32 bits)

Subtrahend (floating-point data, 32 bits)

Minuend (floating-point data, 32 bits)

Name Label Operation

Error Flag ER ON if the minuend or subtrahend data is not recognized
as floating-point data.

ON if the minuend or subtrahend is not a number (NaN).
ON if +∞ is subtracted from +∞.
ON if –∞ is subtracted from –∞.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
329

Floating-point Math Instructions Section 3-14
3-14-5 FLOATING-POINT MULTIPLY: *F(456)
Purpose Multiplies two 32-bit floating-point numbers and places the result in the speci-

fied result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description *F(456) multiplies the 32-bit floating-point number in Md+1 and Md by the 32-
bit floating-point number in Mr+1 and Mr and places the result in R+1 and R.
(The floating point data must be in IEEE754 format.)

*F(456)

R

Md

Mr

Md: First Multiplicand word

Mr: First Multiplier word

R: First result word

Variations Executed Each Cycle for ON Condition *F(456)

Executed Once for Upward Differentiation @*F(456)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R+1 R

Md Multiplicand (floating-point data, 32 bits)Md+1

Mr Multiplier (floating-point data, 32 bits)Mr+1

Result (floating-point data, 32 bits)

×

330

Floating-point Math Instructions Section 3-14
If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of multiplicand and multiplier data will produce the
results shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Multiplicand (Md+1 and Md) and Multiplier (Mr+1 and Mr) data must be in
IEEE754 floating-point data format.

3-14-6 FLOATING-POINT DIVIDE: /F(457)
Purpose Divides one 32-bit floating-point number by another and places the result in

the specified result words.

Ladder Symbol

Multiplicand

Multiplier 0 Numeral +∞ –∞ NaN

0 0 0 See note 2. See note 2. ---

Numeral 0 See note 1. +/–∞ +/–∞ ---

+∞ See note 2. +/–∞ +∞ –∞ ---

–∞ See note 2. +/–∞ –∞ +∞ ---

NaN --- See note 2.

Name Label Operation

Error Flag ER ON if the multiplicand or multiplier data is not recognized
as floating-point data.

ON if the multiplicand or multiplier is not a number (NaN).
ON if +∞ and 0 are multiplied.
ON if –∞ and 0 are multiplied.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

/F(457)

R

Dd

Dr

Dd: First Dividend word

Dr: First Divisor word

R: First result word
331

Floating-point Math Instructions Section 3-14
Variations

Applicable Program Areas

Operand Specifications

Description /F(457) divides the 32-bit floating-point number in Dd+1 and Dd by the 32-bit
floating-point number in Dr+1 and Dr and places the result in R+1 and R. (The
floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Variations Executed Each Cycle for ON Condition /F(457)

Executed Once for Upward Differentiation @/F(457)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R+1 R

÷

Dd Dividend (floating-point data, 32 bits)Dd+1

Dr Divisor (floating-point data, 32 bits)Dr+1

Result (floating-point data, 32 bits)
332

Floating-point Math Instructions Section 3-14
The various combinations of dividend and divisor data will produce the results
shown in the following table.

Note 1. The results could be zero (including underflows), a numeral, +∞, or –∞.

2. The results will be zero for underflows.

3. The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Dividend (Dd+1 and Dd) and Divisor (Dr+1 and Dr) data must be in
IEEE754 floating-point data format.

3-14-7 DEGREES TO RADIANS: RAD(458)
Purpose Converts a 32-bit floating-point number from degrees to radians and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Dividend

Divisor 0 Numeral +∞ –∞ NaN

0 See note 3. +/–∞ +∞ –∞ ---

Numeral 0 See note 1. +/–∞ +/–∞ ---

+∞ 0 See note 2. See note 3. See note 3. ---

–∞ 0 See note 2. See note 3. See note 3. ---

NaN --- See note 3.

Name Label Operation

Error Flag ER ON if the dividend or divisor data is not recognized as
floating-point data.
ON if the dividend or divisor is not a number (NaN).

ON if the dividend and divisor are both 0.
ON if the dividend and divisor are both +∞ or –∞.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.

RAD(458)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition RAD(458)

Executed Once for Upward Differentiation @RAD(458)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
333

Floating-point Math Instructions Section 3-14
Operand Specifications

Description RAD(458) converts the 32-bit floating-point number in S+1 and S from
degrees to radians and places the result in R and R+1. (The floating point
source data must be in IEEE754 format.)

Degrees are converted to radians by means of the following formula:

Degrees × π/180 = radians

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R+1 R

SS+1 Source (degrees, 32-bit floating-point data)

Result (radians, 32-bit floating-point data)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.
334

Floating-point Math Instructions Section 3-14
3-14-8 RADIANS TO DEGREES: DEG(459)
Purpose Converts a 32-bit floating-point number from radians to degrees and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description DEG(459) converts the 32-bit floating-point number in S+1 and S from radians
to degrees and places the result in R+1 and R. (The floating point source data
must be in IEEE754 format.)

Radians are converted to degrees by means of the following formula:

Radians × 180/π = degrees

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

DEG(459)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition DEG(459)

Executed Once for Upward Differentiation @DEG(459)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 000 to #FFFF FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

R+1 R

SS+1 Source (radians, 32-bit floating-point data)

Result (degrees, 32-bit floating-point data)
335

Floating-point Math Instructions Section 3-14
If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-9 SINE: SIN(460)
Purpose Calculates the sine of a 32-bit floating-point number (in radians) and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

SIN(460)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition SIN(460)

Executed Once for Upward Differentiation @SIN(460)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767
336

Floating-point Math Instructions Section 3-14
Description SIN(460) calculates the sine of the angle (in radians) expressed as a 32-bit
floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting from degrees to
radians, see 3-14-17 DEGREES-TO-RADIANS: RAD(458).

The following diagram shows the relationship between the angle and result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area S R

R+1 R

SS+1SIN Source (32-bit floating-point data)

Result (32-bit floating-point data)

R S: Angle (radian) data
R: Result (sine)

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.

OFF in all other cases.
337

Floating-point Math Instructions Section 3-14
3-14-10 COSINE: COS(461)
Purpose Calculates the cosine of a 32-bit floating-point number (in radians) and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description COS(461) calculates the cosine of the angle (in radians) expressed as a 32-
bit floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting from degrees to
radians, see 3-14-7 DEGREES TO RADIANS: RAD(458).

COS(461)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition COS(461)

Executed Once for Upward Differentiation @COS(461)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

R+1 R

SS+1COS Source (32-bit floating-point data)

Result (32-bit floating-point data)
338

Floating-point Math Instructions Section 3-14
The following diagram shows the relationship between the angle and result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-11 TANGENT: TAN(462)
Purpose Calculates the tangent of a 32-bit floating-point number (in radians) and

places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

R S: Angle (radian) data
R: Result (cosine)

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data is not between
0 to 65,535.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

TAN(462)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition TAN(462)

Executed Once for Upward Differentiation @TAN(462)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766
339

Floating-point Math Instructions Section 3-14
Description TAN(462) calculates the tangent of the angle (in radians) expressed as a 32-
bit floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting from degrees to
radians, see 3-14-7 DEGREES TO RADIANS: RAD(458).

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

The following diagram shows the relationship between the angle and result.

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area S R

R+1 R

SS+1TAN Source (32-bit floating-point data)

Result (32-bit floating-point data)

R S: Angle (radian) data

R: Result (tangent)
340

Floating-point Math Instructions Section 3-14
Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-12 ARC SINE: ASIN(463)
Purpose Calculates the arc sine of a 32-bit floating-point number and places the result

in the specified result words. (The arc sine function is the inverse of the sine
function; it returns the angle that produces a given sine value between –1 and
1.)

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data is not between
0 to 65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

ASIN(463)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition ASIN(463)

Executed Once for Upward Differentiation @ASIN(463)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

341

Floating-point Math Instructions Section 3-14
Description ASIN(463) computes the angle (in radians) for a sine value expressed as a
32-bit floating-point number in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words R+1 and R as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

Flags

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area S R

R+1 R

SS+1SIN
–1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data (sine value)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).

ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.

OFF in all other cases.
342

Floating-point Math Instructions Section 3-14
Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-13 ARC COSINE: ACOS(464)
Purpose Calculates the arc cosine of a 32-bit floating-point number and places the

result in the specified result words. (The arc cosine function is the inverse of
the cosine function; it returns the angle that produces a given cosine value
between –1 and 1.)

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ACOS(464) computes the angle (in radians) for a cosine value expressed as a
32-bit floating-point number in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

ACOS(464)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition ACOS(464)

Executed Once for Upward Differentiation @ACOS(464)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R+1 R

SS+1COS–1 Source (32-bit floating-point data)

Result (32-bit floating-point data)
343

Floating-point Math Instructions Section 3-14
The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words R+1 and R as an angle (in radians) within the
range of 0 to π.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-14 ARC TANGENT: ATAN(465)
Purpose Calculates the arc tangent of a 32-bit floating-point number and places the

result in the specified result words. (The arc tangent function is the inverse of
the tangent function; it returns the angle that produces a given tangent value.)

Ladder Symbol

Variations

R
S: Input data (cosine value)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).

ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N OFF

S

R

ATAN(465)

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition ATAN(465)

Executed Once for Upward Differentiation @ATAN(465)

Executed Once for Downward Differentiation Not supported.
344

Floating-point Math Instructions Section 3-14
Applicable Program Areas

Operand Specifications

Description ATAN(465) computes the angle (in radians) for a tangent value expressed as
a 32-bit floating-point number in S+1 and S and places the result in R+1 and
R.
(The floating point source data must be in IEEE754 format.)

The result is output to words R+1 and R as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R+1 R

SS+1TAN–1 Source (32-bit floating-point data)

Result (32-bit floating-point data)
345

Floating-point Math Instructions Section 3-14
Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-15 SQUARE ROOT: SQRT(466)
Purpose Calculates the square root of a 32-bit floating-point number and places the

result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

R

S: Input data (tangent)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

SQRT(466)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition SQRT(466)

Executed Once for Upward Differentiation @SQRT(466)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
346

Floating-point Math Instructions Section 3-14
Operand Specifications

Description SQRT(466) calculates the square root of the 32-bit floating-point number in
S+1 and S and places the result in R+1 and R. (The floating point source data
must be in IEEE754 format.)

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as +∞.

The following diagram shows the relationship between the input data and
result.

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R+1 R

SS+1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data
R: Result
347

Floating-point Math Instructions Section 3-14
Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-16 EXPONENT: EXP(467)
Purpose Calculates the natural (base e) exponential of a 32-bit floating-point number

and places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is negative.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF OFF

Negative Flag N OFF

EXP(467)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition EXP(467)

Executed Once for Upward Differentiation @EXP(467)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

348

Floating-point Math Instructions Section 3-14
Description EXP(467) calculates the natural (base e) exponential of the 32-bit floating-
point number in S+1 and S and places the result in R+1 and R. In other words,
EXP(467) calculates ex (x = source) and places the result in R+1 and R.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as +∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area S R

R+1 R

SS+1

e
Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data
R: Result

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N OFF
349

Floating-point Math Instructions Section 3-14
3-14-17 LOGARITHM: LOG(468)
Purpose Calculates the natural (base e) logarithm of a 32-bit floating-point number and

places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description LOG(468) calculates the natural (base e) logarithm of the 32-bit floating-point
number in S+1 and S and places the result in R+1 and R.

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

LOG(468)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition LOG(468)

Executed Once for Upward Differentiation @LOG(468)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

R+1 R

SS+1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

loge
350

Floating-point Math Instructions Section 3-14
Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-18 EXPONENTIAL POWER: PWR(840)
Purpose Raises a 32-bit floating-point number to the power of another 32-bit floating-

point number.

Ladder Symbol

R

S: Input data
R: Result

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is negative.
ON if the source data is not a number (NaN).

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.

OFF in all other cases.

PWR(840)

B

E

R

B: First base word

E: First exponent word

R: First result word
351

Floating-point Math Instructions Section 3-14
Variations

Applicable Program Areas

Operand Specifications

Description PWR(840) raises the 32-bit floating-point number in B+1 and B to the power
of the 32-bit floating-point number in E+1 and E. In other words, PWR(840)
calculates XY (X = B+1 and B; Y = E+1 and E).

For example, when the base words (B+1 and B) contain 3.1 and the exponent
words (E+1 and E) contain 3, the result is 3.13 or 29.791.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON.

Variations Executed Each Cycle for ON Condition PWR(840)

Executed Once for Upward Differentiation @PWR(840)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B E R

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648 A448 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

E+1 E

B+1 B R+1 R

Exponent data

Base data
352

Floating-point Math Instructions Section 3-14
Flags

Precautions The base (B+1 and B) and the exponent (E+1 and E) must be in IEEE754
floating-point data format.

3-14-19 Single-precision Floating-point Comparison Instructions
Purpose These input comparison instructions compare two single-precision floating

point values (32-bit IEEE754 constants and/or the contents of specified
words) and create an ON execution condition when the comparison condition
is true.

Note Refer to 3-6-1 Input Comparison Instructions (300 to 328) for details on the
signed and unsigned binary input comparison instructions.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the base (B+1 and B) or exponent (E+1 and E) is
not recognized as floating-point data.

ON if the base (B+1 and B) or exponent (E+1 and E) is
not a number (NaN).
ON if the base (B+1 and B) is 0 and the exponent (E+1
and E) is less than 0. (Division by 0)
ON if the base (B+1 and B) is negative and the exponent
(E+1 and E) is non-integer. (Root of a negative number)

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Symbol & options

Variations Creates ON Each Cycle Comparison is True Input compari-
son instruction

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0000 to CIO 0254

Work Area W000 to W254

Auxiliary Bit Area A000 to A648

Timer Area T0000 to T0254

Counter Area C0000 to C0254

DM Area D00000 to D32766
353

Floating-point Math Instructions Section 3-14
Description The input comparison instruction compares the data specified in S1 and S2 as
single-precision floating point values (32-bit IEEE754 data) and creates an
ON execution condition when the comparison condition is true. When the data
is stored in words, S1 and S2 specify the first of two words containing the 32-
bit data. It is also possible to input the floating-point data as an 8-digit hexa-
decimal constant in S1 and S2.

Inputting the Instructions

The input comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 0000 to #FFFF FFFF (binary)

Index Registers IR0 or IR1

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area S1 S2

Input type Operation

LD The instruction can be connected directly to the left bus bar.

AND The instruction cannot be connected directly to the left bus bar.

OR The instruction can be connected directly to the left bus bar.

<F

<F

<F

LD connection

AND connection

OR connection

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.
354

Floating-point Math Instructions Section 3-14
Options

With the three input types and six symbols, there are 18 different possible
combinations.

Summary of Input Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 18 single-precision floating-point input comparison instructions.
(C1=S1+1, S1 and C2=S2+1, S2.)

Flags

Symbol Option (data format)

= (Equal)

< > (Not equal)
< (Less than)
<= (Less than or equal)

> (Greater than)
>= (Greater than or equal)

F: Single-precision floating-point data

Code Mnemonic Name Function

329 LD=F LOAD FLOATING EQUAL True if
C1 = C2AND=F AND FLOATING EQUAL

OR=F OR FLOATING EQUAL

330 LD<>F LOAD FLOATING NOT EQUAL True if
C1 ≠ C2AND<>F AND FLOATING NOT EQUAL

OR<>F OR FLOATING NOT EQUAL

331 LD<F LOAD FLOATING LESS THAN True if
C1 < C2AND<F AND FLOATING LESS THAN

OR<F OR FLOATING LESS THAN

332 LD<=F LOAD FLOATING LESS THAN OR EQUAL True if
C1 ≤ C2AND<=F AND FLOATING LESS THAN OR EQUAL

OR<=F OR FLOATING LESS THAN OR EQUAL

333 LD>F LOAD FLOATING GREATER THAN True if
C1 > C2AND>F AND FLOATING GREATER THAN

OR>F OR FLOATING GREATER THAN

325 LD>=F LOAD FLOATING GREATER THAN OR EQUAL True if
C1 ≥ C2AND>=F AND FLOATING GREATER THAN OR EQUAL

OR>=F OR FLOATING GREATER THAN OR EQUAL

Name Label Operation

Error Flag ER ON if S1+1, S1 or S2+1, S2 is not a valid floating-point
number (NaN).

ON if S1+1, S1 or S2+1, S2 is +∞.

ON if S1+1, S1 or S2+1, S2 is –∞.

OFF in all other cases.

Greater Than
Flag

> ON if S1+1, S1 > S2+1, S2.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if S1+1, S1 ≥ S2+1, S2.

OFF in all other cases.

Equal Flag = ON if S1+1, S1 = S2+1, S2.

OFF in all other cases.

Not Equal Flag = ON if S1+1, S1 ≠ S2+1, S2.

OFF in all other cases.
355

Table Data Processing Instructions Section 3-15
Precautions Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Example AND FLOATING LESS THAN: AND<F(331)

When CIO 0000.00 is ON in the following example, the floating point data in
D00101, D00100 is compared to the floating point data in D00201, D00200. If
the content of D00101, D00100 is less than that of D00201, D00200, execu-
tion proceeds to the next line and CIO 0050.00 is turned ON. If the content of
D00101, D00100 is not less than that of D00201, D00200, execution does not
proceed to the next instruction line.

3-15 Table Data Processing Instructions
This section describes instructions used to handle table data.

Range Instructions The range instructions included here act on a specified range of words to find
the maximum value (MAX(182)) or minimum value (MIN(183)).

Less Than Flag < ON if S1+1, S1 < S2+1, S2.

OFF in all other cases.

Less Than or
Equal Flag

< = ON if S1+1, S1 ≤ S2+1, S2.

OFF in all other cases.

Negative Flag N Unchanged

Name Label Operation

<F

D00100

D00200

0000.00 0050.00

2.3>−3.5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

15 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1

15 0

S1: D00100
S1+1: D00101

S2: D00200
S2+1: D00201

4294967296<5566555656

1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1
0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1

15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0

15 0

S1: D00100
S1+1: D00101

S2: D00200
S2+1: D00201

FLOATING LESS THAN Comparison (<F)

Yields an ON condition.

Decimal value: 4,294,967,296

Decimal value: −3.5

Does not yield an ON condition.

Decimal value: 2.3

Decimal value: 5,566,555,656

Instruction Mnemonic Function code Page

FIND MAXIMUM MAX 182 357

FIND MINIMUM MIN 183 360

Range
specified in
instruction

MAX or
MIN
search
356

Table Data Processing Instructions Section 3-15
3-15-1 FIND MAXIMUM: MAX(182)
Purpose Finds the maximum value in a range.

Ladder Symbol

Variations

Applicable Program Areas

Operands C and C+1: Control words
C specifies the number of words in the range, bit 15 of C+1 indicates whether
the data will be treated as signed binary or unsigned binary, and bit 14 of C+1
indicates whether or not to output the memory address of the word that con-
tains the maximum value to IR00.

Note C and C+1 must be in the same data area.

The following table shows the possible values of C+1.

MAX(182)

C

R1

D

C: First control word

R1: First word in range

D: Destination word

Variations Executed Each Cycle for ON Condition MAX(182)

Executed Once for Upward Differentiation @MAX(182)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C+1 Data type Index Register output

0000 Unsigned binary No

4000 Unsigned binary Yes

8000 Signed binary No

C000 Signed binary Yes

15 0

C

15 014

0

C+1

13

00 0000 0000 0000

Output selection

Data type

Number of words in range

0: Does not output address to IR00.
1: Outputs address to IR00.

0: Unsigned binary data
1: Signed binary data
357

Table Data Processing Instructions Section 3-15
R1: First word in range
R1 specifies the first word in the search range. The words from R1 to R1+(C–
1) are searched for the maximum value. (C is the number of words specified in
C.)

Note R1 and R1+(C–1) must be in the same data area.

Operand Specifications

Description MAX(182) searches the range of memory from R1 to R1+C–1 for the maxi-
mum value in the range and outputs that maximum value to D.

When bit 14 of C+1 has been set to 1, MAX(182) writes the memory address
of the word containing the maximum value to IR00. (If two or more words
within the range contain the maximum value, the address of the first word con-
taining the maximum value is written to IR00.)

When bit 15 of C+1 has been set to 1, MAX(182) treats the data within the
range as signed binary data.

R1

R1+(C–1)

15 0

---to

Search range

Area C R1 D

CIO Area CIO 0000 to
CIO 0254

CIO 0000 to CIO 0255

Work Area W000 to W254 W000 to W255

Auxiliary Bit Area A000 to A648 A000 to A649 A448 to A649

Timer Area T0000 to T0254 T0000 to T0255

Counter Area C0000 to C0254 C0000 to C0255

DM Area D00000 to D32766 D00000 to D32767

Indirect DM
addresses in binary

@ D00000 to @ D32767

Indirect DM
addresses in BCD

*D00000 to *D32767

Constants Specified values only ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R1+(C–1)

C

R1

Max.

C words

Memory address

value

Number of words
358

Table Data Processing Instructions Section 3-15
Flags

Precautions When bit 15 of C+1 has been set to 1, the data within the range is treated as
signed binary data and hexadecimal values 8000 to FFFF are considered
negative. Thus, the results of the search will differ depending on the data-type
setting.

Examples When CIO 0000.00 turns ON in the following example, MAX(182) searches
the 10-word range beginning at D00200 for the maximum value. The maxi-
mum value is written to D00300 and the memory address of the word contain-
ing the maximum value is written to IR00.

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.

OFF in all other cases.

Equals Flag = ON if the maximum value is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 is ON in the word containing the maximum
value.

OFF in all other cases.

C: D00100

C+1: D00101

D: D00300

R1:

1

R1

–2

–1
–3

100CA

 0 0 0 A

0000.00

000100CA

10 words

Number of words

Always 0.

1: Outputs address to IR00.

1: Treats data as signed binary.

Decimal
equivalent

Max. value
Memory
address
359

Table Data Processing Instructions Section 3-15
3-15-2 FIND MINIMUM: MIN(183)
Purpose Finds the minimum value in a range.

Ladder Symbol

Variations

Applicable Program Areas

Operands C and C+1: Control words
C specifies the number of words in the range, bit 15 of C+1 indicates whether
the data will be treated as signed binary or unsigned binary, and bit 14 of C+1
indicates whether or not to output the memory address of the word that con-
tains the minimum value to IR00.

Note C and C+1 must be in the same data area.

The following table shows the possible values of C+1.

MIN(183)

C

R1

D

C: First control word

R1: First word in range

D: Destination word

Variations Executed Each Cycle for ON Condition MIN(183)

Executed Once for Upward Differentiation @MIN(183)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C+1 Data type Index Register output

0000 Unsigned binary No

4000 Unsigned binary Yes

8000 Signed binary No

C000 Signed binary Yes

15 0

C

15 014

0

C+1
13

00 0000 0000 0000

Output selection

Data type
0: Unsigned binary data
1: Signed binary data

0: Does not output address to IR00.
1: Outputs address to IR00.

Number of words in range
360

Table Data Processing Instructions Section 3-15
R1: First word in range
R1 specifies the first word in the search range. The words from R1 to R1+(C–
1) are searched for the minimum value. (C is the number of words specified in
C.)

Note R1 and R1+C–1 must be in the same data area.

Operand Specifications

Description MIN(183) searches the range of memory from R1 to R1+C–1 for the minimum
value in the range and outputs that minimum value to D.

When bit 14 of C+1 has been set to 1, MIN(183) writes the memory address
of the word containing the minimum value to IR00. (If two or more words
within the range contain the minimum value, the address of the first word con-
taining the minimum value is written to IR00.)

When bit 15 of C+1 has been set to 1, MIN(183) treats the data within the
range as signed binary data.

R1

R1+(C–1)

15 0

---to

Search range

Area C R1 D

CIO Area CIO 0000 to
CIO 0254

CIO 0000 to CIO 0255

Work Area W000 to W254 W000 to W255

Auxiliary Bit Area A000 to A648 A000 to A649 A448 to A649

Timer Area T0000 to T0254 T0000 to T0255

Counter Area C0000 to C0254 C0000 to C0255

DM Area D00000 to
D32766

D00000 to D32767

Indirect DM addresses
in binary

@ D0000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants Specified values
only

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

R1+(C–1)

R1
C

C words

Min. value

Memory address

Number of words
361

Table Data Processing Instructions Section 3-15
Flags

Precautions When bit 15 of C+1 has been set to 1, the data within the range is treated as
signed binary data and hexadecimal values 8000 to FFFF are considered
negative. Thus, the results of the search will differ depending on the data-type
setting.

Examples When CIO 0000.00 turns ON in the following example, MIN(183) searches the
10-word range beginning at D00200 for the minimum value. The minimum
value is written to D00300 and the memory address of the word containing
the minimum value is written to IR00.

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.

OFF in all other cases.

Equals Flag = ON if the minimum value is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 is ON in the word containing the minimum
value.

OFF in all other cases.

C: D00100

C+1: D00101

R1:

D: D00300

R1

100CF

–2

–1

–3

1

 0 0 0 A

0000.00

000100CF

1: Treats data as signed binary.

1: Outputs address to IR00.

Always 0.

Memory
address

Decimal
equivalent

Min. value

10 words

Number of words
362

Data Control Instructions Section 3-16
3-16 Data Control Instructions
This section describes instructions used to scale and average data.

3-16-1 SCALING: SCL(194)
Purpose Converts unsigned binary data into unsigned BCD data according to the

specified linear function.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the four words starting with the first parameter word (P1) are
shown in the following diagram.

Note P1 to P1+3 must be in the same area.

Instruction Mnemonic Function code Page

SCALING SCL 194 363

SCALING 2 SCL2 486 367

SCALING 3 SCL3 487 371

AVERAGE AVG 195 374

SCL(194)

S

P1

R

S: Source word

P1: First parameter word

R: Result word

Variations Executed Each Cycle for ON Condition SCL(194)

Executed Once for Upward Differentiation @SCL(194)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

P1

P1+1

P1+2

P1+3

15 0

15 0

15 0

15 0

Scaled value for point A (Ar)
0000 to 9999 (4-digit BCD)

Unscaled value for point A (As)
0000 to FFFF (binary)

Scaled value for point B (Br)
0000 to 9999 (4-digit BCD)

Unscaled value for point B (Bs)
0000 to FFFF (binary)
363

Data Control Instructions Section 3-16
Operand Specifications

Description SCL(194) is used to convert the unsigned binary data contained in the source
word S into unsigned BCD data and place the result in the result word R
according to the linear function defined by points (As, Ar) and (Bs, Br). The
address of the first word containing the coordinates of points (As, Ar) and (Bs,
Br) is specified for the first parameter word P1. These points are defined by 2
values (As and Bs) before scaling and 2 values (Ar and Br) after scaling.

The following equations are used for the conversion.

Points A and B can define a line with either a positive or negative slope. Using
a negative slope enables reverse scaling.

The result will be rounded to the nearest integer. If the result is less than
0000, 0000 will be output as the result. If the result is greater than 9999, 9999
will be output.

SCL(194) can be used to scale the results of analog signal conversion values
from Motion Control Modules with Analog I/O (FQM1-MMA21) according to
user-defined scale parameters. For example, if a 1 to 5-V input to a Motion

Area S P1 R

CIO Area CIO 0000 to
CIO 0255

CIO 0000 to
CIO 0252

CIO 0000 to
CIO 0255

Work Area W000 to W255 W000 to W252 W000 to W255

Auxiliary Bit Area A000 to A649 A000 to A646 A448 to A649

Timer Area T0000 to T0255 T0000 to T0252 T0000 to T0255

Counter Area C0000 to C0255 C0000 to C0252 C0000 to C0255

DM Area D00000 to
D32767

D00000 to
D32764

D00000 to
D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

– ×

–

(Br – Ar)
R = Br

R = Br

BCD conversion of (Bs – As)
 BCD conversion of (Bs – S)

The slope of the line is as follows:

 (Br – Ar)

 BCD conversion of (Bs – As)

P1

P1+1

P1+2

P1+3

Br

Ar
As (BIN)

Br (BCD)

Bs (BIN)

Ar (BCD)

R (unsigned BCD) Scaling is performed according
to the linear function defined by
points A and B.

Converted value

Converted value

S (unsigned binary)

Point B

Point A
364

Data Control Instructions Section 3-16
Control Module with Analog I/O is input to memory as 0000 to 0FA0 hexadec-
imal, the value in memory can be scaled to 50 to 200 BCD using SCL(194).

SCL(194) converts unsigned binary to unsigned BCD. To convert a negative
value, it will be necessary to first add the maximum negative value in the pro-
gram before using SCL(194) (see example).

SCL(194) cannot output a negative value to the result word, R. If the result is
a negative value, 0000 will be output to R.

Flags

Precautions An error will occur and the Error Flag will turn ON if the values for Ar (P1) and
Br (P1+2) are not in BCD, or if the values for As (P1+1) and Bs (P1+3) are
equal.

The Equals Flag will turn ON when the contents of the result word R is 0000.

Examples In the following example, it is assume that an analog signal from 1 to 5 V is
converted and input to D00000 as 0000 to 0FA0 hexadecimal. SCL(194) is
used to convert (scale) the value in D00000 to a value between 0000 and
0300 BCD.

When CIO 0000.00 is ON, the contents of D00000 is scaled using the linear
function defined by point A (0000, 0000) and point B (0FA0, 0300). The coor-
dinates of these points are contained in D00100 to D00103, and the result is
output to D00200.

Negative Values

A Motion Control Module actually inputs values from FF38 to 1068 hexadeci-
mal for 0.8 to 5.2 V. SCL(194), however, can handle only unsigned binary val-
ues between 0000 and FFFF hexadecimal, making it impossible to use
SCL(194) directly to handle signed binary values below 1 V (0000 hexadeci-
mal), i.e., FF38 to FFFF hexadecimal. In an actual application, it is thus nec-
essary to add 00C8 hexadecimal to all values so that FF38 hexadecimal is

Name Label Operation

Error Flag ER ON if the contents of P1 (Ar) or P1+2 (Br) is not BCD.
ON if the contents of P1+1 (As) and P1+3 (Bs) are equal.
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

P1: D00100

P1+1: D00101

P1+2: D00102

P1+3: D00103

P1

R

D00000

Ar (BCD)

As (binary)

Br (BCD)

Bs (binary)

Contents of D00200 (R)

Contents of D00000 (S)

Point B

Point A
365

Data Control Instructions Section 3-16
represented as 0000 hexadecimal before using SCL(194), as shown in the fol-
lowing example.

In this example, values from 0000 to 00C8 hexadecimal will be converted to
negative values. SCL(194), however, can output only unsigned BCD values
from 0000 to 9999, so 0000 BCD will be output whenever the content of
D00000 is between 0000 and 00C8 hexadecimal.

Reverse Scaling

Reverse scaling can also be used by setting As < Bs and Ar > Br. The follow-
ing relationship will result.

Reverse scaling can be used, for example, to convert (reverse scale) 1 to 5 V
(0000 to 0FA0 hexadecimal) to 0300 to 0000, respectively, as shown in the fol-
lowing diagram.

(binary)

(binary)

P1: D00100

P1+1: D00101

P1+2: D00102

P1+3: D00103

+

+00C8 hex

1068 hex

0FA0 hex

1130 hex

1068 hex

0000 hex

FF38 hex

00C8 hex
0000 hex

0000 hex
00C8 hex 1068 hex

1130 hex

A550

#00C8

Br (BCD)

Ar (BCD)

Contents of D 00200 (R)

Point B

Point A
Contents of D00000 (S)

Point A (00C8 hex → 0000 (BCD))
Point B (1068 hex → 0300 (BCD))

The value in A550
plus 00C8
hexadecimal

Ar

Br

S (unsigned binary)

Point B

Point A

R (unsigned BCD)
366

Data Control Instructions Section 3-16
3-16-2 SCALING 2: SCL2(486)
Purpose Converts signed binary data into signed BCD data according to the specified

linear function. An offset can be input in defining the linear function.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the three words starting with the first parameter word (P1) are
shown in the following diagram.

Note P1 to P1+2 must be in the same area.

R

Point B

Point A

SCL2(486)

S

P1

R

S: Source word

P1: First parameter word

R: Result word

Variations Executed Each Cycle for ON Condition SCL2(486)

Executed Once for Upward Differentiation @SCL2(486)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

∆Y

∆X

P1

P1+1

P1+2

15 0

15 0

15 0

Offset of linear function
8000 to 7FFF (signed binary)

8000 to 7FFF (signed binary)

0000 to 9999 (BCD)
367

Data Control Instructions Section 3-16
Operand Specifications

Description SCL2(486) is used to convert the signed binary data contained in the source
word S into signed BCD data (the BCD data contains the absolute value and
the Carry Flag shows the sign) and place the result in the result word R
according to the linear function defined by the slope (∆X, ∆Y) and an offset.
The address of the first word containing ∆X, ∆Y, and the offset is specified for
the first parameter word P1. The sign of the result is indicated by the status of
the Carry Flag (ON: negative, OFF: positive).

The following equations are used for the conversion.

The offset and slope can be a positive value, 0, or a negative value. Using a
negative slope enables reverse scaling.

The result will be rounded to the nearest integer.

The result in R will be the absolute BCD conversion value and the sign will be
indicated by the Carry Flag. The result can thus be between –9999 and 9999.

If the result is less than –9999, –9999 will be output as the result. If the result
is greater than 9999, 9999 will be output.

Area S P1 R

CIO Area CIO 0000 to
CIO 0255

CIO 0000 to
CIO 0253

CIO 0000 to
CIO 0255

Work Area W000 to W255 W000 to W253 W000 to W255

Auxiliary Bit Area A000 to A649 A000 to A647 A448 to A649

Timer Area T0000 to T0255 T0000 to T0253 T0000 to T0255

Counter Area C0000 to C0255 C0000 to C0253 C0000 to C0255

DM Area D00000 to
D32767

D00000 to
D32765

D00000 to
D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

∆Y
R = BCD conversion of ∆X

The slope of the line is ∆Y/∆X.

 x ((BCD conversion of S) – (BCD conversion of offset)
368

Data Control Instructions Section 3-16
SCL2(486) can be used to scale the results of analog signal conversion val-
ues from Motion Control Modules with Analog I/O (FQM1-MMA21) according
to user-defined scale parameters. For example, if a 1 to 5-V input to a Motion
Control Module is input to memory as 0000 to 0FA0 hexadecimal, the value in
memory can be scaled to –100 to 200 BCD using SCL2(486).

SCL2(486) converts signed binary to signed BCD. Negative values can thus
be handled directly for S. The result of scaling in R and the Carry Flag can
also be used to output negative values for the scaling result.

Flags

Precautions An error will occur and the Error Flag will turn ON if the value for ∆X (P1+1) is
0000 or if the value for ∆Y (P1+2) is not BCD.

The Equals Flag will turn ON when the contents of the result word R is 0000.

The Carry Flag will turn ON if the value placed in the result word is negative.

Examples Scaling 1 to 5-V Analog Input to 0 to 300
In the following example, it is assumed that an analog signal from 1 to 5 V is
converted and input to CIO 0005 as 0000 to 0FA0 hexadecimal. SCL2(486) is
used to convert (scale) the value in CIO 0005 to a value between 0000 and
0300 BCD.

When CIO 0000.00 is ON, the contents of CIO 0005 is scaled using the linear
function defined by ∆X (0FA0), ∆Y (0300), and the offset (0). These values are
contained in D00100 to D00102, and the result is output to D00200.

∆Y

∆X

∆Y

∆X

∆Y

∆X

∆X

∆Y

P1

P1+1

P1+2

R (signed BCD)

S (signed binary)

Offset

R (signed BCD)

S (signed binary)
Offset

R (signed BCD)

S (signed binary)

Offset of 0000

Offset = 0000 hex

Offset (Signed binary)

(Signed binary)

(Signed BCD)

Positive Offset Negative Offset

Name Label Operation

Error Flag ER ON if the contents of P1+1 (∆X) is 0000.
ON if the contents of P1+2 (∆Y) is not BCD.

OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Carry Flag CY ON if the result is negative.
OFF if the result is zero or positive.
369

Data Control Instructions Section 3-16
Scaling 1 to 5-V Analog Input to –200 to 200

In the following example, it is assume that an analog signal from 1 to 5 V is
converted and input to CIO 0005 as 0000 to 0FA0 hexadecimal. SCL2(486) is
used to convert (scale) the value in CIO 0005 to a value between –0200 and
0200 BCD.

When CIO 0000.00 is ON, the contents of CIO 0005 is scaled using the linear
function defined by ∆X (0FA0), ∆Y (0400), and the offset (07D0). These values
are contained in D00100 to D00102, and the result is output to D00200.

∆X

∆Y

(∆X)

P1:

P1+1:

P1+2:

P1

R

0000.00

0005

0300 (∆Y)

Contents of R (D00200)

Contents of S (CIO 0005)

Offset

0FA0 hex

X

∆

P1:

P1+1:

P1+2:

0400 (∆Y)

P1

R

0 F A 0

D00100

D00101

D00102

∆
Y

0000.00

0005

Offset

Contents of R (D00200)

Offset
07D0 hex

Contents of S (CIO 0005)

0FA0 hex
(∆X)
370

Data Control Instructions Section 3-16
3-16-3 SCALING 3: SCL3(487)
Purpose Converts signed BCD data into signed binary data according to the specified

linear function. An offset can be input in defining the linear function.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the five words starting with the first parameter word (P1) are
shown in the following diagram.

Note P1 to P1+4 must be in the same area.

SCL3(487)

S

P1

R

S: Source word

P1: First parameter word

R: Result word

Variations Executed Each Cycle for ON Condition SCL3(487)

Executed Once for Upward Differentiation @SCL3(487)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

∆Y

∆X

P1

P1+1

P1+2

P1+3

P1+4

15 0

15 0

15 0

15 0

15 0

Offset of linear function
8000 to 7FFF (signed binary)

0001 to 9999 (BCD)

8000 to 7FFF (signed binary)

Maximum conversion
8000 to 7FFF (signed binary)

Minimum conversion
8000 to 7FFF (signed binary)
371

Data Control Instructions Section 3-16
Operand Specifications

Description SCL3(487) is used to convert the signed BCD data (the BCD data contains
the absolute value and the Carry Flag shows the sign) contained in the source
word S into signed binary data and place the result in the result word R
according to the linear function defined by the slope (∆X, ∆Y) and an offset.
The maximum and minimum conversion values are also specified. The
address of the first word containing ∆X, ∆Y, the offset, the maximum conver-
sion, and the minimum conversion is specified for the first parameter word P1.

The sign of the result is indicated by the status of the Carry Flag (ON: nega-
tive, OFF: positive). Use STC(040) and CLC(041) to turn the Carry Flag ON
and OFF.

The following equations are used for the conversion.

The offset and slope can be a positive value, 0, or a negative value. Using a
negative slope enables reverse scaling.

The result will be rounded to the nearest integer.

The source value in S is treated as an absolute BCD value and the sign is
indicated by the Carry Flag. The source value can thus be between –9999
and 9999.

If the result is less than the minimum conversion value, the minimum conver-
sion value will be output as the result. If the result is greater than the maxi-
mum conversion value, the maximum conversion value will be output.

Area S P1 R

CIO Area CIO 0000 to
CIO 0255

CIO 0000 to
CIO 0251

CIO 0000 to
CIO 0255

Work Area W000 to W255 W000 to W251 W000 to W255

Auxiliary Bit Area A000 to A649 A000 to A645 A448 to A649

Timer Area T0000 to T0255 T0000 to T0251 T0000 to T0255

Counter Area C0000 to C0255 C0000 to C0251 C0000 to C0255

DM Area D00000 to
D32767

D00000 to
D32763

D00000 to
D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

∆Y
R = Binary conversion of ∆X

x ((Binary conversion of S)+(Offset))

The slope of the line is ∆Y/∆X.
372

Data Control Instructions Section 3-16
SCL3(487) is used to convert data using a user-defined scale to signed binary
for Analog Output Units. For example, SCL3(487) can convert 0 to 200 °C to
0000 to 0FA0 (hex) and output an analog output signal 1 to 5 V from the Ana-
log Output Unit.

Flags

Precautions An error will occur and the Error Flag will turn ON if the contents of S is not
BCD or if the value for ∆X (P1+1) is not between 0001 and 9999 BCD.

The Equals Flag will turn ON when the contents of the result word R is 0000.

The Negative Flag will turn ON if the MSB of the result in R is 1, i.e., if the
result is negative.

Examples When a value from 0 to 200 is scaled to an analog signal (1 to 5 V, for exam-
ple), a signed BCD value of 0000 to 0200 is converted (scaled) to signed
binary value of 0000 to 0FA0 for a Motion Control Module. When CIO 0000.00
turns ON in the following example, the contents of D00000 is scaled using the
linear function defined by ∆X (0200), ∆Y (0FA0), and the offset (0). These val-
ues are contained in D00100 to D00102. The sign of the BCD value in
D00000 is indicated by the Carry Flag. The result is output to CIO 2011.

∆X

∆Y

∆X

∆Y

∆X

∆Y

S (signed BCD)

Offset Offset

S (signed BCD)

Offset of 0000

Positive Offset

R (signed binary)

Negative Offset

R (signed binary)

Max conversionMax conversion

Min. conversion S (signed BCD)

Min. conversion

R (signed binary)

Max conversion

Min. conversion

Name Label Operation

Error Flag ER ON if the contents of S is not BCD.
ON if the contents of P1+1 (∆X) is not between 0001 and
9999 BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000.

OFF in all other cases.

Negative Flag N ON when the MSB of the R (the result) is 1.

OFF in all other cases.
373

Data Control Instructions Section 3-16
3-16-4 AVERAGE: AVG(195)
Purpose Calculates the average value of an input word for the specified number of

cycles.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Number of Cycles and Sign Specification
The number of cycles N must be between 01 and 40 hexadecimal (1 to 64
cycles). Bit 14 specifies if signed data or unsigned data is used.

∆X (0200)

∆Y

∆X

P1:

P1+1:

P1+2:

P1+3:

P1+4:

P1

R

0000.00

Offset
Contents of R (2011, signed binary)

 ∆Y (0FA0 hex)

Contents of S (D00000, signed BCD)

Max. conversion

Min. conversion

S

C

R

AVG(195)

S: Source word

C: Control word (Number of cycles N and
sign specification)

R: Result word (average)

R+1: First work area word

Variations Executed Each Cycle for ON Condition AVG(195)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

Not allowed OK OK OK

15 14 07 00

0 0C

OFF: Average unsigned data
ON: Average signed data

Number of cycles to average
01 to 40 hex (1 to 64 decimal)
374

Data Control Instructions Section 3-16
R: Result Word (Average)
R+1: First Work Area Word (Read-only)

R will contain the average value after the specified number of cycles. R+1 pro-
vides information on the averaging process and R+2 to R+N+3 contain the
previous values of S as shown in the following diagram.

R: Average
R+1: Processing data (read-only)
R+2: Processing data (read-only)
R+3: Processing data (read-only)
R+4: Previous value #1
R+5: Previous value #2
R+N+3: Previous value #N

Note R to R+N+3 must be in the same area.

Operand Specifications

S

R

R+4

R+1

R+N+3

15 14 13 08 07 00
C 0 0 0

R+5

Source word PV

Signed/Unsigned

Cycle 1

Cycle 2

Cycle N

N values

Average

Pointer

No. of cycles N

Average Valid Flag

Area S C R

CIO Area CIO 0000 to CIO 0255 CIO 000 to
CIO 251

Work Area W000 to W255 W000 to W251

Auxiliary Bit Area A000 to A649 A448 to A645

Timer Area T0000 to T0255 T0000 to T0251

Counter Area C0000 to C0255 C0000 to C0251

DM Area D00000 to D32767 D00000 to
D32763

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants #0000 to #FFFF

(binary)

#0001 to #0040

(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1
375

Data Control Instructions Section 3-16
Description For the first N–1 cycles when the execution condition is ON, AVG(195) writes
the values of S (binary data) in order to words starting with R+4. The Previous
Value Pointer (bits 00 to 07 of R+1) is incremented each time a value is writ-
ten. Until the Nth value is written, the contents of S will be output unchanged
to R and the Average Value Flag (bit 15 of R+1) will remain OFF.

When the Nth value is written to R+N+3, the average of all the values that
have been stored will be computed, the average will be output to R as a binary
value, and the Average Value Flag (bit 15 of R+1) will be turned ON. For all
further cycles, the value in R will be updated for the most current N values of
S. The maximum value of N is 64.

The Previous Value Pointer will be reset to 0 after N–1 values have been writ-
ten.

The average value output to R will be rounded to the nearest integer.

Flags

Precautions The contents of the First Work Area Word (R+1) is cleared to 0000 each time
the execution condition changes from OFF to ON.

The contents of the First Work Area Word (R+1) will not be cleared to 0000
the first time the program is executed at the start of operation. If AVG(195) is
to be executed in the first program scan, clear the First Work Area Word from
the program.

If N (Number of Cycles) is 00, an error will occur and the Error Flag will turn
ON.

Examples When CIO 0000.00 is ON in the following example, the contents of D00100
will be stored one time each scan for the number of scans specified in
D00200. The contents will be stored in order in the ten words from CIO 0014
to CIO 0023. The average of the contents of these ten words will be placed in
CIO 0010 and then bit 15 of CIO 0011 will be turned ON.

R+N+3

R

R+1

R+4

R+5

S Cycle 1

S Cycle 2

S Cycle N

S: Source word

N: Number of cycles

Average

n values

Average Valid Flag

Pointer

Name Label Operation

Error Flag ER ON if the value of N is 0.

OFF in all other cases.
376

Data Control Instructions Section 3-16
In the following example, the content of CIO 0040 is set to #0000 and then
incremented by 1 each cycle. For the first two cycles, AVG(195) stores the
content of CIO 0040 to D01004 and D01005. The contents of D01001 will
also change (which can be used to confirm that the results of AVG(195) has
changed). On the third and later cycles, AVG(195) calculates the average
value of the contents of D01004 to D01006 and writes that average value to
D01000.

S: D00100

C: D00200

R: CIO 0010

R+1: CIO 0011

R+2: CIO 0014

R+3: CIO 0015

R+11: CIO 0023

S

C

R

0000.00

0010

Average

Pointer

Average Valid Flag

(10 times)

S, scan 2

S, scan 1

S, scan 10

D01000 0000 0001 0001 0002
D01001 0001 0002 8000 8001
D01002 --- --- --- ---
D01003 --- --- --- ---
D01004 0000 0000 0000 0003

CIO 0040 0000 0001 0002 0003

@MOV

0000.01

D01005 --- 0001 0001 0001
D01006 --- --- 0002 0002

CLC(041)

 1st cycle 2nd cycle 3rd cycle 4th cycle

Average

Pointer

3 previous values of
CIO 0040
377

Subroutines Section 3-17
3-17 Subroutines
This section describes instructions used to control subroutines.

3-17-1 SUBROUTINE CALL: SBS(091)
Purpose Calls the subroutine with the specified subroutine number and executes that

program.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Subroutine number
Specifies the subroutine number between 0 and 255 decimal.

Operand Specifications

Description SBS(091) calls the subroutine with the specified subroutine number. The sub-
routine is the program section between SBN(092) and RET(093). When the
subroutine is completed, program execution continues with the next instruc-
tion after SBS(091).

Instruction Mnemonic Function code Page

SUBROUTINE CALL SBS 091 378

MACRO MCRO 099 383

SUBROUTINE ENTRY SBN 092 387

SUBROUTINE RETURN RET 093 390

JUMP TO SUBROUTINE JSB 982 390

SBS(091)

N N: Subroutine number

Variations Executed Each Cycle for ON Condition SBS(091)

Executed Once for Upward Differentiation @SBS(091)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N

CIO Area ---

Work Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0 to 255 (decimal)

Index Registers ---

Indirect addressing
using Index Registers

378

Subroutines Section 3-17
Subroutines can be nested up to 16 levels. Nesting is when another subrou-
tine is called from within a subroutine program, such as shown in the following
example, which is nested to 3 levels.

Subroutine
program
(SBN(092) to
RET(093))

Main program

Execution condition ON

Program end

SBN 10

SBS 11

RET

SBN 11

SBS 12

RET RET

SBN 12

Execution condition ON

Main program

Execution condition ONSubroutine
program n

Two-level
nesting

Subroutine
program m

Program end
379

Subroutines Section 3-17
Note A subroutine can be called more than once in a program.

Subroutines and
Differentiation

Observe the following precautions when using differentiated instructions
(DIFU(013), DIFU(014), or up/down differentiated instructions) in subroutines.

The operation of differentiated instructions in a subroutine is unpredictable if a
subroutine is executed more than once in the same cycle. In the following
example, subroutine 001 is executed when CIO 0000.00 is ON and
CIO 0001.00 is turned ON by DIFU(013) when CIO 0000.01 has gone from
OFF to ON. If CIO 0000.01 is ON in the same cycle, subroutine 001 will be
executed again but this time DIFU(013) will turn CIO 0001.00 OFF without
checking the status of CIO 0000.01.

In contrast, the output of a differentiated instruction (DIFU(013) or DIFD(014))
would remain ON if the instruction was executed and the output was turned
ON but the same subroutine was not called a second time.

In the following example, subroutine 001 is executed if CIO 0000.00 is ON.
Output CIO 0001.00 is turned ON by DIFU(013) when CIO 0000.01 has gone
from OFF to ON. If CIO 0000.00 is OFF in the following cycle, subroutine 001
will not be executed again and output CIO 0001.00 will remain ON.

1

3

2

4

5

1

1

1

0000.00

0000.01

0000.01

0001.00

Subroutine
001 The subroutine is

executed again.

1

3

2

1

1

000100

0000.00

0000.01

0001.00

The subroutine is not executed
in following cycles.
380

Subroutines Section 3-17
Flags

Precautions SBS(091) and the corresponding SBN(092) must be programmed in the same
task. An error will occur if the corresponding SBN(092) is not in the task.

SBS(091) will be treated as NOP(000) when it is within a program section
interlocked by IL(002) and ILC(003).

When SBS(091) is executed in the following cases, the subroutine will not
actually be called and the Error Flag will be turned ON:

1,2,3... 1. The specified subroutine is not defined within the current task.

2. The subroutine is calling itself.

3. Subroutine nesting exceeds 16 levels.

4. The specified subroutine is being executed.

Examples Example 1: Sequential (Non-nested) Subroutines
When CIO 0000.00 is ON in the following example, subroutine 001 is exe-
cuted and program execution returns to the next instruction after SBS(091).
The remainder of the main program (through the instruction just before
SBN(092) 1) is then executed.

Name Label Operation

Error Flag ER ON if nesting exceeds 16 levels.
ON if the specified subroutine number does not exist.

ON if a subroutine calls itself.
ON if a subroutine being executed is called.
ON if the specified subroutine is not defined in the current
task.
OFF in all other cases.

1

3

A S→B

A→B

CIO 0000.00 ON

2

0000.00

CIO 0000.00

→
Subroutine 001

Main program

Subroutine program:
S

Order of execution
381

Subroutines Section 3-17
Example 2: Sequential (Non-nested) Subroutines
When CIO 0000.00 is ON in the following example, subroutine 001 is exe-
cuted and program execution returns to the next instruction after SBS(091) 1.
When CIO 0000.01 is ON, subroutine 002 is executed and program execution
returns to the next instruction after SBS(091) 2.

1

3

5

2

4

A→S1→B→S2→C

A→S1→B→C

A→B→S2→C

A→B→C

CIO 0000.00 ON

CIO 0000.01 ON

0000.00

0000.01

CIO 0000.00 CIO 0000.01

001

002

Subroutines

Program end

Main program

Order of execution
382

Subroutines Section 3-17
Example 3: Nested Subroutines
When CIO 0000.00 is ON in the following example, subroutine 001 is exe-
cuted. If CIO 0000.01 is ON, subroutine 002 is executed from within subrou-
tine 001 and program execution returns to the next instruction after
SBS(091) 2 when subroutine 002 is completed. Execution of subroutine 001
continues and program execution returns to the next instruction after
SBS(091) 1 when subroutine 001 is completed.

3-17-2 MACRO: MCRO(099)
Purpose Calls the subroutine with the specified subroutine number and executes that

program using the input parameters in S to S+4 and the output parameters in
D to D+4.

Ladder Symbol

1

5

2

4

3

CIO 0000.00 ON

CIO 0000.01 ON

1

2

2

1

A→S1-1→S2→S1-2→B

A→S1-1→S1-2→B

A→B

A→B

CIO 0000.00 CIO 0000.01

0000.00

0000.01

Subroutine 001

Subroutine 002

Order of execution

MCRO(099)

N

S

D

N: Subroutine number

S: First input parameter word

D: First output parameter word
383

Subroutines Section 3-17
Variations

Applicable Program Areas

Operands N: Subroutine number
Specifies the subroutine number between 0 and 255 decimal.

Operand Specifications

Description MCRO(099) calls the subroutine with the specified subroutine number just like
SBS(091). Unlike SBS(091), MCRO(099) operands S and D can be used to
change bit and word addresses in the subroutine, although the structure of
the subroutine is constant.

When MCRO(099) is executed, the contents of S through S+4 are copied to
A510 through A514 (macro area inputs) and the specified subroutine is exe-
cuted. When the subroutine is completed, the contents of A515 through A519
(macro area outputs) are copied to D through D+4 and program execution
continues with the next instruction after MCRO(099).

Variations Executed Each Cycle for ON Condition MCRO(099)

Executed Once for Upward Differentiation @MCRO(099)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N S D

CIO Area --- CIO 0000 to CIO 0251

Work Area --- W000 to W251

Auxiliary Bit Area --- A000 to A443
A448 to A645

A448 to A645

Timer Area --- T0000 to T0251

Counter Area --- C0000 to C0251

DM Area --- D00000 to D32763

Indirect DM addresses
in binary

--- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants 0 to 255 (decimal) ---

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to
+2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
384

Subroutines Section 3-17
MCRO(099) can be used to consolidate two or more subroutines with the
same structure but different input and output addresses into a single subrou-
tine program. When MCRO(099) is executed, the specified input and output
data is transferred to the specified subroutine.

Flags

The following table shows relevant words in the Auxiliary Area.

Precautions The five words of input data (words or bits) in A510 to A514 and the five words
of output data (words or bits) in A515 to A519 must be used in the subroutine
called by MCRO(099). It is not possible to pass more than five words of data.

It is possible to nest MCRO(099) instructions, but the data in the macro area
input and output words (A510 to A519) must be saved before calling another
subroutine because all MCRO(099) instructions use the same 10 words.

MCRO(099)

MCRO(099)
SBN

N

S

S+1

S+2

S+3

S+4

A510

A511

A512

A513

A514

D

D+1

D+2

D+3

D+4

A515

A516

A517

A518

A519

MCRO

N

S

D

MCRO

N

S'

D'

Execution of subrou-
tine between
SBN(092) and
RET(093).

Input

Output

The subroutine uses A510 to
A514 as inputs and A515 to
A519 as outputs.

Name Label Operation

Error Flag ER ON if nesting exceeds 16 levels.
ON if the specified subroutine number does not exist.
ON if a subroutine calls itself.

ON if a subroutine being executed is called.
ON if the specified subroutine is not defined in the current
task.

OFF in all other cases.

Name Address Operation

Macro area input
words

A510 to
A514

When MCRO(099) is executed the five words
from S to S+4 are copied to A510 to A514. These
input words are passed to the subroutine.

Macro area input
words

A515 to
A519

After the subroutine specified in MCRO(099) has
been executed, the output data in these output
words and copied to D to D+4.
385

Subroutines Section 3-17
Example When CIO 0000.00 is ON in the following example, two MCRO(099) instruc-
tions pass different input and output data to subroutine 001.

1,2,3... 1. The first MCRO(099) instruction passes the input data in CIO 0010 to
CIO 0014 and executes the subroutine. When the subroutine is completed,
the output data is stored in CIO 0030 to CIO 0034.

2. The second MCRO(099) instruction passes the input data in CIO 0020 to
CIO 0024 and executes the subroutine. When the subroutine is completed,
the output data is stored in CIO 0040 to CIO 0044.

The second MCRO(099) instruction operates in the same way, but the input
data in CIO 0020 to CIO 0024 is passed to A510 to A514 and the output data
in A515 to A519 is passed to CIO 0040 to CIO 0044.

The above programming is equivalent to the following programming.

SBN

1

MCRO

1

0010

0030

MCRO

1

0020

0040

S 0010

S+1 0011

S+2 0012

S+3 0013

S+4 0014

A510

A511

A512

A513

A514

D 0030

D+1 0031

D+2 0032

D+3 0033

D+4 0034

A515

A516

A517

A518

A519

A604.03A510.01

0000.00

A511.02

RET

15 15

15 0 15

0

0

0

Input

Output

Subroutine 001

Output data is passed when
returning from the subroutine. Macro area output words

Input data is passed when
the subroutine is called. Macro area input words

Execution of
subroutine 001
386

Subroutines Section 3-17
3-17-3 SUBROUTINE ENTRY: SBN(092)
Purpose Indicates the beginning of the subroutine program with the specified subrou-

tine number. Used in combination with RET(093) to define a subroutine
region.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Subroutine number
Specifies the subroutine number between 0 and 255 decimal.

Operand Specifications

JMP

&1

JME

&1

0030.030010.01

0011.02

0000.00

0040.030020.01

0021.02

SBN(092)

N N: Subroutine number

Variations Executed Each Cycle for ON Condition SBN(092)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed Not allowed OK

Area N

CIO Area ---

Work Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0 to 255 (decimal)
387

Subroutines Section 3-17
Description SBN(092) indicates the beginning of the subroutine with the specified subrou-
tine number. The end of the subroutine is indicated by RET(093).

The region of the program beginning at the first SBN(092) instruction is the
subroutine region. A subroutine is executed only when it has been called by
SBS(091), JSB(982), or MCRO(099).

Precautions When the subroutine is not being executed, the instructions are treated as
NOP(000).

Place the subroutines after the main program and just before the END(001)
instruction in the program for each task. If part of the main program is placed
after the subroutine region, that program section will be ignored.

Note Input #0 to #1023 on the CX-Programmer to input the subroutine number, N.

Be sure to place each subroutine in the same program (task) as its corre-
sponding SBS(091), JSB(982), or MCRO(099) instruction. A subroutine in
one task cannot be called from another task. It is possible to program a sub-
routine within an interrupt task.

Index Registers ---

Indirect addressing
using Index Registers

Area N

SBS

10

MCRO

10

S

D

0000.00

SBN

10

RET

END

JSB

10

S

D

Subroutine
region

OR OR

SBS

n

JSB

n

S

DSBN

n

RET

END

MCRO

n

S

D

Subroutine region

OR

This part of the program
won't be executed.

OR
388

Subroutines Section 3-17
The step instructions, STEP(008) and SNXT(009) cannot be used in subrou-
tines.

Example When CIO 0000.00 is ON in the following example, subroutine 10 is executed
and program execution returns to the next instruction after the SBS(091) or
MCRO(099) instruction that called the subroutine.

OK

Task 2

Task 1 Task

Not allowed

Not allowed

OR
#10

#10

#10

0000.00

Subroutine 10
Sub-
rou-
tine 10
389

Subroutines Section 3-17
3-17-4 SUBROUTINE RETURN: RET(093)
Purpose Indicates the end of a subroutine program. Used in combination with

SBN(092) to define a subroutine region.

Ladder Symbol

Variations

Applicable Program Areas

Description RET(093) indicates the end of a subroutine and SBN(092) indicates the
beginning of a subroutine. See 3-17-3 SUBROUTINE ENTRY: SBN(092) for
more details on the operation of subroutines.

When program execution reaches RET(093), it is automatically returned to
the next instruction after the SBS(091), JSB(982), or MCRO(099) instruction
that called the subroutine. When the subroutine has been called by
MCRO(099), the output data in A515 through A519 is written to D through
D+4 before program execution is returned.

Precautions When the subroutine is not being executed, the instructions are treated as
NOP(000).

Example See 3-17-3 SUBROUTINE ENTRY: SBN(092) for examples of the operation
of RET(093).

3-17-5 JUMP SUBROUTINE: JSB(982)
Purpose Always calls the subroutine with the specified subroutine number regardless

of the ON/OFF status of the execution condition.

The ON/OFF status of the execution condition is stored in the bit between
A000.00 and A015.15 that corresponds to the specified subroutine number
(between 0 and 255).

Ladder Symbol

Associated Instructions • SUBROUTINE ENTRY: SBN(092)

• SUBROUTINE RETURN: RET(093)

Variations

Applicable Program Areas

RET(093)

Variations Executed Each Cycle for ON Condition RET(093)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK

JSB(982)

N

S

D

N: Subroutine number

S: First input parameter word

D: First output parameter word

Variations Executed Each Cycle JSB(982)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
390

Subroutines Section 3-17
Operands N: Subroutine number
Specifies the subroutine number between 0 and 255 decimal.

S: First input parameter word
Specifies the first word of the data to be passed to the subroutine.
The memory address of the specified word is set in Index Register IR0.

D: First output parameter word
Specifies the first word of the data to be passed out of the subroutine.
The memory address of the specified word is set in Index Register IR0.

Operand Specifications

Description The specified subroutine is always started, so the JSB(982) instruction’s exe-
cution condition does not control execution of the instruction. Instead, the exe-
cution condition is automatically stored in a corresponding Auxiliary Area bit
(A000.00 to A015.15) as the Powerflow Flag. That Powerflow Flag can be
used in the subroutine as a switch to perform different processing.

JSB(982) will be executed even when the execution condition is OFF.
JSB(982) stores the status of the execution condition in the corresponding bit
(A000.00 to A015.15 correspond to subroutine numbers 0 to 255) and calls
the specified subroutine. The execution condition (Powerflow Flag stored in
A000.00 to A015.15) can be used in the subroutine to control processing.

Example 1:
When the execution condition is ON, jogging is performed. When the execu-
tion condition is OFF, the axis is stopped or decelerated.

Example 2:
When the execution condition goes from OFF to ON, a communications
instruction is executed. Even if the execution condition is OFF, the communi-
cations instruction will receive the response and communications processing
will be monitored until it is completed.

Using Index Registers for General-purpose Subroutines

With JSB(982), the words containing the input data can be specified and the
memory address of the beginning word is automatically stored in IR0 so the
specified subroutine can be used repeatedly. When Index Register IR0 is indi-
rectly addressed in the subroutine, the subroutine accesses the first word
containing the desired input data and that input data is read and processed.

The output parameter words can be specified in the same way, and the begin-
ning word for the output data is automatically stored in IR1. Index Register IR1

Area N S D

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A000 to A649 A448 to A649

Timer Area --- T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @D00000 to @D32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants 0 to 255 (decimal) --- ---

Index Registers --- ---

Indirect addressing
using Index Registers

--- ---
391

Subroutines Section 3-17
can be indirectly addressed in the subroutine to write the processing results to
the desired words as output data.

Note 1. With SBS(091), the subroutine is completely skipped when the execution
condition (Powerflow Flag) is OFF. Therefore, if SBS(091) is used to call
the subroutine, any processing required when the execution condition is
OFF cannot be included in the subroutine. (For example, a subroutine that
performs jogging when the execution condition is ON cannot contain pro-
cessing such as stopping or decelerating an axis required when the exe-
cution condition is OFF).

2. With SBS(091), there is no function in the subroutine to indicate whether
or not the subroutine is being executed for the first time. Therefore, if
SBS(091) is used to call the subroutine, it is not possible to divide process-
ing over several cycles in that subroutine.

Operation of JSB(982)

Note JSB(982) will be executed even when the execution condition (Powerflow
Flag) is OFF.

When JSB(982) is executed, it performs the following operations:

1,2,3... 1. The subroutine is started and the corresponding Subroutine Powerflow
Flag (A000.00 to A015.15) is turned ON.

2. The memory addresses of the first input parameter word (S) and first out-
put parameter word (D) are stored in Index Registers IR0 and IR1, respec-
tively.

3. The specified subroutine is executed up to RET(093), the SUBROUTINE
RETURN instruction.

4. The JSB(982) instruction ends.

Note If JSB(982) is placed in a program section between IL(002) and ILC(003),
JSB(982) will execute the subroutine even when the program section is inter-
locked. The contents of the destination subroutine will be interlocked.

Flags None of the Condition Flags are affected by this instruction.

JSB(982)Execution condition
(Powerflow Flag) N: Subroutine number

S: First word of input
parameters

D: First word of output
parameters

Address Corresponding subroutine
numberWord Bit

A000 00 to 15 SBN000 to SBN015

A001 00 to 15 SBN016 to SBN031

A002 00 to 15 SBN032 to SBN047

to to

A015 00 to 15 SBN240 to SBN255
392

Subroutines Section 3-17
Example: Executing JSB(982) with a Powerflow Flag

JSB
0

D00000
D01000

a b c

SBN
&0

A000.00

@ACC
#0000
#0000
,IR0

@INI
#0000
#0003
0000

W000.00

W000.00

W000.00

D00000
D00001
D00002

Main Program

Subroutine Program 0

Logical result of the
execution condition

Subroutine 0 is always started,
regardless of the execution
condition's status. At the same
time, the execution condition's
status is stored in A000.00.
The memory address of D00000
(10000 Hex) is stored in IR0.
The memory address of D00100
(10064 Hex) is stored in IR1.

The ON/OFF status of A000.00
switches operation between the
ACC and INI instructions.
The ACC instruction accesses the
input parameters stored at D00000
through the memory address stored
in IR0 and performs speed control
based on these input parameters.

Always calls subroutine 0.

Powerflow Flag status when
subroutine 0 was called

Speed control processing

References input
parameters.

Address Data
Acceleration rate
Target frequency

Stop processing
393

Interrupt Control Instructions Section 3-18
Example Task Structure

3-18 Interrupt Control Instructions
This section describes instructions used to control interrupts and interrupt tim-
ers.

3-18-1 SET INTERRUPT MASK: MSKS(690)
Purpose Both I/O interrupt tasks and scheduled interrupt tasks are masked (disabled)

when the Module enters RUN mode. MSKS(690) can be used to unmask or
mask I/O interrupts. MSKS(690) can be used only for FQM1-MMP21 and
FQM1-MMA21 Motion Control Modules.

Ladder Symbol

Variations

Applicable Program Areas

SBS

n

SBN

n

RET

END

SBS

n

END

SBN

n

RET

END

Task 1

Task 2

Task

Incorrect Correct

Instruction Mnemonic Function code Page

SET INTERRUPT MASK MSKS 690 394

READ INTERRUPT MASK MSKR 692 396

CLEAR INTERRUPT CLI 691 398

DISABLE INTERRUPTS DI 693 399

ENABLE INTERRUPTS EI 694 400

INTERVAL TIMER STIM 980 401

MSKS(690)

N

S

N: Interrupt identifier

S: Interrupt data

Variations Executed Each Cycle for ON Condition MSKS(690)

Executed Once for Upward Differentiation @MSKS(690)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
394

Interrupt Control Instructions Section 3-18
Specifying I/O Interrupt Processing and Mask Processing

The relationship between interrupt input numbers and interrupt task numbers
is shown in the following table.

Operand Specifications

Flags

Operand Contents

N Specify the interrupt input number.

#0000: Interrupt input 0
#0001: Interrupt input 1
#0002: Interrupt input 2
#0003: Interrupt input 3

S Interrupt mask.

0000 hex: Interrupt enabled
0001 hex: Interrupt masked
0002 hex: Decrementing counter started and interrupts enabled

Interrupt input number Interrupt task numbers

Interrupt input 0 000 CIO 0000.00

Interrupt input 1 001 CIO 0000.01

Interrupt input 2 002 CIO 0000.02

Interrupt input 3 003 CIO 0000.03

Area N S

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A000 to A649

Timer Area --- T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @ D00000 to @ 32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants Specified values only #0 to #2

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048
to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Name Label Operation

Error Flag ER ON if the specified range exceeds an area boundary.
ON if the specified value exceeds the allowable range.

ON if N is not within the specified range of 0 to 3 hex.
ON if S is not within the specified range of 0 to 2 hex.
OFF in all other cases.

Equals Flag = OFF

Negative Flag N OFF
395

Interrupt Control Instructions Section 3-18
System Setup Settings

Examples Examples

When CIO 0002.00 turns ON in the following example, MSKS(690) unmasks
(enables) interrupt input 0.

When CIO 0002.01 turns ON in the following example, MSKS(690) disables
interrupt input 0.

3-18-2 READ INTERRUPT MASK: MSKR(692)
Purpose Reads the current interrupt processing settings that were set with

MSKS(690).

Ladder Symbol

Variations

Applicable Program Areas

Name Description Settings

Interrupt
Input
Settings

Specify whether built-
in inputs are to be
used as normal inputs
or as interrupt inputs.

00 hex: Normal (default)
01 hex: Interruption (up)

(interrupt when input turns ON)
02 hex: Interruption (down)

(interrupt when input turns OFF)

03 hex: Interruption (both edge)
(interrupt when input turns ON or OFF)

MSKS

#0

 D00100

0002.00

N

S

D00100

015 8 7 4 312 11

0 00 0

0: Enabled
1: Masked

MSKS

#0

#1

0002.01

N

S

MSKR(692)

N

D

N: Interrupt identifier

D: Destination word

Variations Executed Each Cycle for ON Condition MSKR(692)

Executed Once for Upward Differentiation @MSKR(692)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
396

Interrupt Control Instructions Section 3-18
Reading Masks

The relationship between interrupt input numbers and interrupt task numbers
is shown in the following table.

Operand Specifications

Description MSKR(692) reads the interrupt input settings specified with MSKS(690). The
status (disabled/enabled) of the input interrupt specified with N is output to D.

Flags

Precautions MSKR(692) can be executed in the main program or in interrupt tasks.

Examples When CIO 0002.00 turns ON in the following example, MSKR(692) reads the
current mask status of Interrupt Input 0 and stores it in D00100.

Operand Contents

N Specify the interrupt input number.

#0000: Interrupt input 0
#0001: Interrupt input 1
#0002: Interrupt input 2
#0003: Interrupt input 3

Interrupt input number Interrupt task numbers

Interrupt input 0 000 CIO 0000.00

Interrupt input 1 001 CIO 0000.01

Interrupt input 2 002 CIO 0000.02

Interrupt input 3 003 CIO 0000.03

Area N D

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A448 to A649

Timer Area --- T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants Specified values only ---

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048
to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0 to 3.

OFF in all other cases.

MSKR

#0

D00100

0002.00

N

D

D00100

015 8 7 4 312 11

0 00 0

0000: Interrupt enabled
0001: Interrupt masked
397

Interrupt Control Instructions Section 3-18
3-18-3 CLEAR INTERRUPT: CLI(691)
Purpose Clears or retains recorded interrupt inputs.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description CLI(691) clears or retains the specified recorded input interrupt.

Values #0000 to #0003 correspond to interrupt inputs 0 to 3.
CLI(691) clears a recorded interrupt input when the corresponding bit of C is
ON and retains the recorded interrupt input when the corresponding bit is
OFF.

CLI(691)

N

C

N: Interrupt number

C: Control data

Variations Executed Each Cycle for ON Condition CLI(691)

Executed Once for Upward Differentiation @CLI(691)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Operand Contents

N Specify the interrupt input number.
#0000: Interrupt input 0
#00001: Interrupt input 1
#00002: Interrupt input 2
#00003: Interrupt input 3

C Control data: Interrupt mask clear specification.

0000 hex: Recorded interrupt input retained.
0001 hex: Recorded interrupt input cleared.

Area N C

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A000 to A649

Timer Area --- T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants Refer to the previous table.

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048
to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1
398

Interrupt Control Instructions Section 3-18
If an interrupt task is being executed and an interrupt input with a different
interrupt number is received, that interrupt number is recorded internally. The
recorded interrupts are executed later in order of their priority (from the lowest
number to the highest). CLI(691) can be used to clear these recorded inter-
rupts before they are executed.

Flags

Examples When CIO 0002.00 turns ON in the following example, CLI(691) clears the
recorded interrupts for interrupt input 0.

3-18-4 DISABLE INTERRUPTS: DI(693)
Purpose Disables execution of all interrupt tasks.

Ladder Symbol

Variations

Applicable Program Areas

Description DI(693) is executed from the main program to temporarily disable all interrupt
tasks (input interrupt tasks, interval timer interrupt tasks, pulse output interrupt
tasks, and high-speed counter interrupt tasks). All interrupt tasks will be dis-
abled until they are enabled again by execution of EI(694).

Note 1. Use EI(694) to enable interrupts again.

2. DI(693) cannot be executed in an interrupt task. Attempting to do so will
cause an error and the Error Flag will turn ON.

Interrupt
input n

Internal
status

Recorded interrupt retainedRecorded interrupt cleared

Internal status

Interrupt input n

Name Label Operation

Error Flag ER ON if N is not between #0000 to #0003.

ON if C is not between 0000 and 0001 hex.
OFF in all other cases.

CL1

#0

D00100

0002.00

N

C

D00100

015 8 7 4 312 11

0 00 0

0000: Recorded interrupt input retained.
0001: Recorded interrupt input cleared.

DI(693)

Variations Executed Each Cycle for ON Condition DI(693)

Executed Once for Upward Differentiation @DI(693)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed
399

Interrupt Control Instructions Section 3-18
Flags

Examples When CIO 0000.00 is ON in the following example, DI(693) disables all inter-
rupt tasks other than the power OFF interrupt task.

3-18-5 ENABLE INTERRUPTS: EI(694)
Purpose Enables execution of all interrupt tasks.

Ladder Symbol

Variations

Applicable Program Areas

Description EI(694) is executed from the main program to enable all interrupt tasks (input
interrupt tasks, interval timer interrupt tasks, pulse output interrupt tasks, and
high-speed counter interrupt tasks) that were disabled by DI(693).

Note 1. EI(694) does not require an execution condition.

2. EI(694) will not enable interrupt tasks for which MSKS(690) has disabled
interrupt inputs, STIM(980) has disabled interval timer interrupts, or CT-
BL(882) has disabled target value comparisons.

3. EI(694) cannot be executed in an interrupt task. Attempting to do so will
cause an error and the Error Flag will turn ON.

Name Label Operation

Error Flag ER ON if DI(693) is executed from an interrupt task.
OFF in all other cases.

0000.00

Disables execution of all interrupt tasks.

DI

END

DI(693) is valid only
before (END(001)) in
task 0 (main task).

Task 0

EI(694)

Variations Executed Each Cycle for Normally ON
Condition

EI(694)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed
400

Interrupt Control Instructions Section 3-18
Flags

Examples In the following example, EI(694) enables all interrupt tasks that were disabled
by DI(693).

3-18-6 INTERVAL TIMER: STIM(980)
Purpose STIM(980) is used to control the interval timers and pulse outputs with the fol-

lowing functions.

Ladder Symbol

Variations

Name Label Operation

Error Flag ER ON if EI(694) is executed from an interrupt task.
OFF in all other cases.

Enables execution of all disabled
interrupt tasks.

Disables execution of all interrupt tasks.

Function Description

Basic functions Starting the one-shot interrupt timer, starting the sched-
uled interrupt timer, reading a timer PV, and stopping an
interrupt timer

Pulse output functions
(FQM1-MMP21 only)

Starting the one-shot pulse output and starting/stopping
the pulse counter timer

STIM(980)

C1

C2

C3

C1: Control data #1

C2: Control data #2

C3: Control data #3

Variations Executed Each Cycle for ON Condition STIM(980)

Executed Once for Upward Differentiation @STIM(980)

Executed Once for Downward Differentiation Not supported.
401

Interrupt Control Instructions Section 3-18
Applicable Program Areas

Operands C1: Control Word 1
The contents of control word #1 are shown below.

C2 and C3: Control Words 2 and 3

The functions of C2 and C3 depend upon the control function setting in C1.

• C1 = #0000 or #0003 (Start one-shot timer or scheduled interrupt timer.)

The following table shows the settings for C2 when specifying a word ad-
dress or constant.

Note a) The total time from the execution of STIM(980) to time-up is:
(Content of C2) × (Content of C2+1) × 0.1 ms)
= 0.5 to 99,990 ms

b) If a constant is set for C2, C2 contains the decrementing time in-
terval between 0.5 and 10.0 ms. (The SV is set directly in 0.1 ms
units.)

c) A timer interrupt function (one-shot timer or scheduled interrupt
timer) executed with STIM(980) can be used simultaneously with
the one-shot pulse output or pulse counter time measurement
function.

• C1 = #0001 or #0002 (One-shot pulse output 1 or 2)

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

Value of C1 Control function

#0000 Start one-shot timer.

#0001 One-shot pulse output 1 (FQM1-MMP21 only)

#0002 One-shot pulse output 2 (FQM1-MMP21 only)

#0003 Start scheduled interrupt timer.

#0006 Read timer PV.

#000A Stop timer.

#000B Start or stop pulse counter timer 1 (FQM1-MMP21 only).

#000C Start or stop pulse counter timer 2 (FQM1-MMP21 only).

Operand Contents

C2 Timer SV (first word)

C3 Interrupt task number 0000 to 0031 hexadecimal (0 to 49 decimal)

C2 Settings

Word address C2: Initial value of decrementing counter
0001 to 270F Hex

C2+1: Decrementing time interval in 0.1 ms units
0005 to 0064 Hex (0.5 to 10.0 ms)

Constant Decrementing time interval in 0.1 ms units
0005 to 0064 Hex (0.5 to 10.0 ms)

Operand Contents

C2 ON time setting: 0001 to 270F Hex

C3 Time units
0000 Hex: 0.1 ms
0001 Hex: 0.01 ms
0002 Hex: 0.1 ms
0003 Hex: 1 ms
402

Interrupt Control Instructions Section 3-18
• C1 = #0006 (Read timer PV.)

• Contents of PV parameter 1 words

• Content of PV parameter 2 word:

The elapsed time since the interval timer started is:
((Content of C2) × (Content of C2+1)) + ((Content of C3) × 0.1 ms)

• C1 = #000A (Stop timer.)

In this case, set both C2 and C3 to 0000.

• C1 = #000B or #000C (Pulse counter timer 1 or 2)

Operand Specifications

Operand Contents

C2 First word containing PV parameter 1

C3 Word containing PV parameter 2

Word Settings

C2 Number of times that the decrementing timer value has been dec-
remented (4-digit hexadecimal)

C2+1 Decrementing time interval (0.1 ms units, 4-digit hexadecimal)

Word Settings

C3 Elapsed time since last decrement operation (0.1 ms units, 4-digit
hexadecimal)

Operand Contents

C2 Start or stop counter.
#0000: Start
#0001: Stop

C3 Time units

0000 hex: 0.1 ms
0001 hex: 0.01 ms
0002 hex: 0.1 ms
0003 hex: 1 ms
0004 hex: 0.001 ms

Area C1 C2 C3

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A000 to A649

Timer Area --- T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @D00000 to @D32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants #0 to #C #0000 to #270F #0 to #31

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or
–2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

403

Interrupt Control Instructions Section 3-18
Description STIM(980) is used to control the interval timers and pulse outputs according
to the parameters specified in C1 (control data 1), C2 (control data 2), and C3
(control data 3).

Note To use STIM(980) to control one-shot pulse outputs, the pulse output opera-
tion mode must be set to 1 shot in advance in the System Setup.
To use STIM(980) for high-precision time measurement, the pulse output
operation mode must be set to Calculation (time measurement) in advance in
the System Setup.

Operation

1. Starting a One-shot Timer

Set C1 to #0000, set C2 to a constant or the word containing the timer SV,
and set C3 to the interrupt task number.

2. Outputting a One-shot Pulse Output

Set C1 to #0001 or #0002, set C2 to the ON time, and set C3 to the inter-
rupt task number.

3. Starting a Scheduled Interrupt Timer

Set C1 to #0003, set C2 to a constant or the word containing the timer SV,
and set C3 to the interrupt task number.

4. Reading the Timer PV

Set C1 to #0006 and set C2 and C3 to the words that will receive the Timer
PV parameters.

5. Starting/Stopping Pulse Counter Time Measurement

Set C1 to #000B or #000C, set C2 to #0000 (start) or #0001 (stop), and set
C3 to the time units.

6. Stopping the Timer (One-shot or Scheduled Interrupt Timer Only)

Set C1 to #000A and set C2 and C3 to #0000.

Flags

System Setup Settings

Precautions Read Timer PV and Stop Timer

• The Read Timer PV function (C1 = #0006) and Stop Timer function (C1 =
#000A) are valid only on a one-shot timer or scheduled interrupt timer
started with STIM(980).

The Read Timer and Stop Timer functions cannot be used on the one-shot
pulse output or pulse counter time measurement.

Name Label Operation

Error Flag ER ON if a value that is out of range is specified for an SV.
(For example, an error will occur if C1 is set to a value
other than 0000, 0001, 0002, 0003, 0006, 000A, 000B, or
000C.)

ON if the pulse output operation mode set in the
System Setup does not match the control mode
specified in C1.

Equals Flag = ---

Negative Flag N ---

Tab Name Setting

Pulse Output
Tab

Pulse output opera-
tion mode

1 shot
404

High-speed Counter/Pulse Output Instructions Section 3-19
One-shot Pulse Outputs

• When STIM(980) is executed just once to start a one-shot pulse output
(C1 = #0001 or #0002), a pulse output with the specified pulse width is
started from the corresponding pulse output port.

In general, start the pulse output with either the up-differentiated version of
the instruction (@ prefix) or an execution condition that is ON for just one
cycle. The later STIM(890) instruction will be ignored if a one-shot pulse
output is being generated and another instruction is executed to start a
one-shot pulse output.

The Pulse Output Flag (A624.07 or A625.07) will be ON while a one-shot
pulse is being output by STIM(890).

• The pulse output operation mode must be set to 1 shot in the System
Setup in order to use STIM(980) to control one-shot pulse outputs. If
STIM(980) is executed to start a one-shot pulse output from a port that is
set for another output mode (such as relative pulse output), the instruction
will not be executed and the ER Flag will be turned ON

Pulse Counters

• When STIM(980) is executed just once to start a counter (C1 = #000B or
#000C, and C2 = #0000), the pulse count is started and must be stopped
by executing the same instruction with C2 = #0001.

In general, start the pulse counter with either the up-differentiated version
of the instruction (@ prefix) or an execution condition that is ON for just one
cycle. If another STIM(890) instruction is executed to start the pulse
counter while pulses are already being counted, the pulse counter will re-
start.

• The pulse output operation mode must be set to Calculation (time mea-
surement) in the System Setup in order to use STIM(980) to count pulses.
If STIM(980) is executed to start a pulse counter at a port that is set for
another output mode (such as relative pulse output), the instruction will
not be executed and the ER Flag will be turned ON

3-19 High-speed Counter/Pulse Output Instructions
This section describes instructions used to control the high-speed counters
and pulse outputs.

3-19-1 MODE CONTROL: INI(880)
Purpose INI(880) can be used to execute the following operations:

• To start comparison with the high-speed counter or pulse output counter
comparison table

• To stop comparison with the high-speed counter or pulse output counter
comparison table

Instruction Mnemonic Function
code

Page

MODE CONTROL INI 880 405

HIGH-SPEED COUNTER PV READ PRV 881 411

REGISTER COMPARISON TABLE CTBL 882 415

SPEED OUTPUT SPED 885 422

SET PULSES PULS 886 428

PULSE OUTPUT PLS2 887 433

ACCELERATION CONTROL ACC 888 438
405

High-speed Counter/Pulse Output Instructions Section 3-19
• To change the PV of the high-speed counter

• To change the maximum circular value of the high-speed counter or pulse
output counter

• To change the PV of the pulse output

• To stop pulse output

• To stop comparison of the sampling counter

• To change the PV of the sampling counter

• To change the circular value of the sampling counter

This instruction is supported by the FQM1-MMP21 and FQM1-MMA21 Motion
Control Modules only.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier
P specifies the port to which the operation applies.

C: Control Data
The function of INI(880) is determined by the control data, C.

NV: First Word with New PV

NV and NV+1 contain the new PV when changing the PV (when C = #0002).

If the PV is not being changed, this operand is not used and NV should be set
to #0000.

INI(880)

P

C

NV

P: Port specifier

C: Control data

NV: First word with new PV

Variations Executed Each Cycle for ON Condition INI(880)

Executed Once for Upward Differentiation @INI(880)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P FQM1-MMP21 FQM1-MMA21

#0001 Counter input port 1 Counter input port 1

#0002 Counter input port 2 Counter input port 2

#0003 Pulse output port 1 Sampling counter

#0004 Pulse output port 2 ---

C INI(880) function

#0000 Start comparison. (Use only in target value comparison mode.)

#0001 Stop comparison. (Use only in target value comparison mode.)

#0002 Change pulse output PV, high-speed counter PV, or sampling counter PV.

#0003 Stop pulse output. (Use only with the FQM1-MMP21.)

#0004 Change pulse output counter circular value, high-speed counter circular
value, or sampling counter circular value.
406

High-speed Counter/Pulse Output Instructions Section 3-19
Operand Specifications

Description INI(880) performs the operation specified in C for the port specified in P. The
possible combinations of operations and ports are shown in the following
table.

■ Starting Comparison (C = 0000 hex)

If C is 0000 hex, INI(880) starts comparison of a high-speed counter’s PV or
pulse output counter’s PV to the comparison table registered with CTBL(882).

NV

NV+1

015

For Pulse Output, High-speed Counter Input,
or Sampling Counter:
 0000 0000 to FFFF FFFF hex

New PV (rightmost 4 digits)

New PV (leftmost 4 digits)

Area P C NV

C = #0002 or
#0004

C = Other
value

CIO Area --- --- CIO 0000 to
CIO 0254

CIO 0000
(Cannot be
used.)

Work Area --- --- W000 to
W254

Auxiliary Bit Area --- --- A000 to A648 ---

Timer Area --- --- T0000 to
T0254

Counter Area --- --- C0000 to
C0254

DM Area --- --- D00000 to
D32766

Indirect DM addresses
in binary

--- --- @ D00000 to
@ D32767

Indirect DM addresses
in BCD

--- --- *D00000 to
*D32767

Constants See operand
description.

See operand
description.

--- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 or ,IR1
–2048 to
+2047 ,IR0 or
–2048 to
+2047 ,IR1

,IR0+(++) or
,IR1+(++)
, –(– –)IR0 or,
–(– –)IR1

P: Port specifier C: Control data

0000 hex: Start
comparison

0001 hex: Stop
comparison

0002 hex:
Change PV

0003 hex: Stop
pulse output

0004 hex: Change
circular value

#0001 or #0002:
High-speed counter input

OK OK OK Not allowed. OK

#0003 or #0004:
Pulse output

OK OK OK OK OK

#0003
Sampling counter

Not allowed. OK OK Not allowed. OK
407

High-speed Counter/Pulse Output Instructions Section 3-19
Note If INI(880) is executed without registering a table, the Error Flag will turn ON
and INI(880) will not be executed.

■ Stopping Comparison (C = 0001 hex)

If C is 0001 hex, INI(880) stops comparison of a high-speed counter’s PV or
pulse output counter’s PV to the comparison table registered with CTBL(882).

■ Changing a PV (C = 0002 hex)

High-speed Counter Input (P = #0001, #0002, or #0003)

P = #0001 or #0002: Change high-speed counter PV

P = #0003 (FQM1-MMA21): Change sampling counter PV

Pulse Output (P = #0003 or #0004)

■ Stopping the Pulse Output (P = #0003 or #0004, C = #0003)

This function immediately stops the pulse output from the specified port. If this
instruction is executed when pulse output is already stopped, then the pulse
amount setting will be cleared.

■ Changing the Counter Circular Value (C = #0004)

High-speed Counter Input (P = #0001, #0002, or #0003)

P = #0001 or #0002: Change high-speed counter PV

P = #0003 (FQM1-MMA21): Change sampling counter PV

High-speed counter’s counting
mode

Control function PV setting range

Linear
mode

Differential inputs, incre-
ment/decrement pulses,
or pulse + direction
inputs

Changes high-speed
counter PV. The new value
is specified in NV and
NV+1.
Note: An error will occur if
the specified port is not set
for high-speed counter
operation.

8000 0000 to
7FFF FFFF hex
(-2,147,483,648 to
2,147,483,647)

Circular mode or sampling
counter operation

0000 0000 to circu-
lar set value (hex)

High-speed counter’s
counting mode

Control function PV setting range

Absolute pulse output
linear mode

Changes the pulse output PV.
The new value is specified in
NV and NV+1.

Note: This instruction can be
executed only while the pulse
output is stopped. An error will
occur if it is executed while
pulses are being output.

8000 0000 to 7FFF FFFF
hex
(-2,147,483,648 to
2,147,483,647)

Absolute pulse output
circular mode

0000 0000 to circular set
value (hex)

High-speed counter’s
counting mode

Control function PV setting range

Circular mode Changes the high-speed counter’s
circular value. The new value is
specified in NV and NV+1.

Note: An error will occur if the
specified port is not set for high-
speed counter operation.

0000 0000 to
FFFF FFFF hex
(0 to 4,294,967,295)

Sampling counter opera-
tion

0000 0000 to
FFFF FFFF hex
(0 to 4,294,967,295)
408

High-speed Counter/Pulse Output Instructions Section 3-19
Pulse Output (P = #0003 or #0004)

Maximum Circular Value in System Setup

INI(880) does not change the maximum circular value setting in the System
Setup. This instruction changes the counter’s register directly, so the counter’s
circular value is initialized to the System Setup circular value when the power
is turned ON. The high-speed counter or pulse output counter circular value
can be changed while the counter is counting, so check the status of the
counter before changing the circular value. If the circular value is set below
the PV, the new circular value won’t be effective until the counter has counted
all the way to FFFF FFFF and started counting again from 0.

Execution Conditions for
each Function

1. Starting Comparison between the Target Value Comparison Table and the
High-speed Counter PV

To start the comparison, execute INI(880) with P set to #0001 or #0002, C
set to #0000, and NV set to 0000. Since the comparison operation will con-
tinue after INI(880) is executed one time with C = #0000, start the compar-
ison with either the up-differentiated version of the instruction (@ prefix) or
an execution condition that is ON for just one cycle.

2. Stopping Comparison between the Target Value Comparison Table and
the High-speed Counter PV

To stop the comparison, execute INI(880) with P set to #0001 or #0002, C
set to #0001, and NV set to 0000.

3. Starting Comparison between the Target Value Comparison Table and the
Pulse Output PV

To start the comparison, execute INI(880) with P set to #0003 or #0004, C
set to #0000, and NV set to 0000. Since the comparison operation will con-
tinue after INI(880) is executed one time with C = #0000, start the compar-
ison with either the up-differentiated version of the instruction (@ prefix) or
an execution condition that is ON for just one cycle.

Note If a target value comparison is executed for the pulse output PV un-
der certain conditions, pulse outputs will stop at completion of the
comparison with no mismatch even if the specified pulse width or tar-
get position has not been reached. Do not use the target value com-
parison for pulse output PV under the following conditions:

(1) When the pulse output operation mode is either 1 shot or Elec-
tronic cam control.

(2) When the pulse output operation mode is either Relative pulse
or Absolute pulse for independent-mode positioning.

4. Stopping Comparison between the Target Value Comparison Table and
the Pulse Output PV

To stop the comparison, execute INI(880) with P set to #0003 or #0004, C
set to #0001, and NV set to 0000.

5. Changing the High-speed Counter PV

To change the high-speed counter’s PV, execute INI(880) with P set to
#0001 or #0002, C set to #0002, and the new PV set in NV and NV+1. If
the counter is operating in circular mode, the PV must not be higher than
the maximum circular counter value. If the specified PV is higher than the

Control function PV setting range

Changes the pulse output counter’s circular
value. The new value is specified in NV and
NV+1.

0000 0000 to FFFF FFFF hex
(0 to 4,294,967,295)
409

High-speed Counter/Pulse Output Instructions Section 3-19
maximum circular counter value, an error will occur and the PV will not be
changed.

6. Changing the Pulse Output PV

To change the pulse output PV, execute INI(880) with P set to #0003 or
#0004, C set to #0002, and the new PV set in NV and NV+1.

Note a) INI(880) can be executed to change the pulse output PV when the
pulse output mode is set to relative pulse output, one-shot pulse
output, or pulse counter time measurement. However, these pulse
output modes initialize the operation counter to 0 before starting
operation, so changing the pulse output PV has no real effect.

b) In circular mode, the pulse output PV cannot be changed to a val-
ue higher than the maximum circular counter value.

7. Stopping the Pulse Output

To stop the pulse output, execute INI(880) with P set to #0003 or #0004, C
set to #0003, and NV set to 0000.

Note Set the System Setup’s pulse output mode to relative pulse output,
absolute pulse output (linear mode), or absolute pulse output (circu-
lar mode). An error will occur and INI(880) won’t be executed if the
pulse output mode is set to one-shot mode or pulse counter time
measurement mode.

8. Changing the High-speed Counter Circular Value

To change the high-speed counter’s circular value, execute INI(880) with P
set to #0001 or #0002, C set to #0004, and the new circular value set in NV
and NV+1.

Note a) This function does not change the maximum circular value setting
in the System Setup; it changes the counter’s register directly.

b) The circular value can be changed while the counter is counting.
Check the status of the counter before changing the circular value.

9. Changing the Pulse Output Counter Circular Value

To change the pulse output counter’s circular value, execute INI(880) with
P set to #0003 or #0004, C set to #0004, and the new circular value set in
NV and NV+1.

Note a) This function does not change the maximum circular value setting
in the System Setup; it changes the counter’s register directly.

b) The circular value can be changed while the counter is counting.
Check the status of the counter before changing the circular value.

10. Stopping (Interrupting) Sampling by the Sampling Counter

To stop sampling, execute INI(880) with P set to #0003, C set to #0001,
and NV set to 0000.

11. Changing the Sampling Counter PV

To change the sampling counter’s PV, execute INI(880) with P set to
#0003, C set to #0002, and the new PV set in NV and NV+1. The PV can
not be higher than the maximum circular counter value.

This function can be used to clear or adjust the sampling counter.

12. Changing the Sampling Counter Circular Value

To change the sampling counter’s circular value, execute INI(880) with P
set to #0003, C set to #0004, and the new circular value set in NV and
NV+1.

This function can be used to set the sampling period as a circular value.
410

High-speed Counter/Pulse Output Instructions Section 3-19
Flags

Example When CIO 0000.00 goes from OFF to ON in the following example,
SPED(885) starts outputting pulses from pulse output 0 in Continuous Mode
at 500 Hz. When CIO 0000.01 goes from OFF to ON, INI(880) stops the pulse
output.

3-19-2 HIGH-SPEED COUNTER PV READ: PRV(881)
Purpose Use PRV(881) to read the high-speed counter PV, high-speed counter latch

value, high-speed counter rate-of-change (counter movements) or frequency,
pulse output PV, pulse counter PV (time measurement), or elapsed time of
one-shot pulse output.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON if P is set to a value other than #0001, #0002, #0003,
or #0004. (With the FQM1-MMA21, #0004 is not allowed
either.)
ON if the PV in NV and NV+1 exceeds the maximum cir-
cular counter value during relative pulse output circular
mode or high-speed counter circular mode operation.
ON if a new PV is specified for a port that is currently out-
putting pulses.

ON if INI(880) is executed to stop pulses while the System
Setup is set for one-shot pulse output.
ON if an instruction controlling pulse I/O or a high-speed
counter is being executed in the main program, an inter-
rupt occurs, and INI(880) is executed in the interrupt task.
OFF in all other cases.

@SPED

#0000

#0000

D00100

01F4

0000

0000.00

@INI

#0003

#0003

0000

0000.01

D00100

D00101Pulse output

CW/CCW method, CW, Continuous Mode

Target frequency: 500 Hz

Pulse output 0

Stop pulse output

(Not used.)

PRV(881)

P

C

D

P: Port specifier

C: Control data

D: First destination word

Variations Executed Each Cycle for ON Condition PRV(881)

Executed Once for Upward Differentiation @PRV(881)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
411

High-speed Counter/Pulse Output Instructions Section 3-19
Operands P: Port Specifier
P specifies the port to which the operation applies.

C: Control Data
The function of INI(880) is determined by the control data, C.

D: First Destination Word

The PV is output to D or to D and D+1.

Operand Specifications

P Port

#1 High-speed counter 1

#2 High-speed counter 2

#3 Pulse output 1 or Analog input (FQM1-MMA21 only)

#4 Pulse output 2

C Function

#0 Reads one of the following values:
• High-speed counter PV
• Pulse output PV
• Pulse output counter PV (time measurement)
• Analog input value

#1 Reads the high-speed counter rate-of-change or measured
frequency.

#2 Reads the high-speed counter latch value.

D

D+1

015

D PV

015

Lower word of PV

Upper word of PV

Two-word values:
Pulse output PV, high-speed counter input PV, high-speed
counter latch value, high-speed counter rate-of change, or
input frequency (high-speed counter input 0 only)

One-word values:
Analog input value

Area P C D

CIO Area --- --- CIO 0000 to CIO 0254

Work Area --- --- W000 to W254

Auxiliary Bit Area --- --- A448 to A648

Timer Area --- --- T0000 to T0254

Counter Area --- --- C0000 to C0254

DM Area --- --- D00000 to D32766

Indirect DM addresses
in binary

--- --- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- --- *D00000 to *D32767

Constants See operand
description.

See operand
description.

412

High-speed Counter/Pulse Output Instructions Section 3-19
Description The function performed by PRV(881) depends on the setting of operand C
(the control data word).

■ Reading a PV (C = #0000)

■ Reading High-speed Counter Rate-of-change or Frequency (C = #0001)

Reads the high-speed counter’s rate-of-change (counter movements) or mea-
sured frequency value and stores it in D and D+1.

D: Rightmost 4 digits (hexadecimal or BCD)
D+1: Leftmost 4 digits (hexadecimal or BCD)

The possible range of the high-speed counter’s rate-of-change (counter
movements) or measured frequency value is 0000 0000 to FFFF FFFF hex.

Note When reading the high-speed counter rate-of-change (counter movements)
with the sampling time set to the cycle time, use an instruction such as
MOV(021) to read the value directly from A604 and A605 (counter 1) or A606
and A607 (counter 2). If PRV(881) is used to read the rate-of-change value, a
value of 0 will be output.

■ Reading the Analog Input Value (C = #0001, FQM1-MMA21 Only)

Reads the most recent analog input value and stores it in D.

The Motion Control Module converts the analog input data when PRV(881) is
executed, so the most recent value is stored. The analog input method must
be set to Immediate refresh in the System Setup in order to read the analog
input value with PRV(881).

■ Reading High-speed Counter Latch Value (C = #0002)

Reads the high-speed counter’s PV and stores it in D and D+1 as an 8-digit
hexadecimal value.

D: Rightmost 4 digits (hexadecimal)
D+1: Leftmost 4 digits (hexadecimal)

Range in linear mode: 8000 0000 to 7FFF FFFF hex.
Range in circular mode: 0000 0000 to FFFF FFFF hex

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or –
2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area P C D

Port and mode Operation Setting range

Absolute pulse
output

Linear
Mode

Reads the pulse output
PV and stores it in D and
D+1.

8000 0000 to 7FFF FFFF hex
(-2,147,483,648 to
2,147,483,647)

Circu-
lar
Mode

0000 0000 to FFFF FFFF hex
(0 to 4,294,967,295)

Relative pulse output

High-speed
counter input

Linear
Mode

Reads the high-speed
counter PV and stores it
in D and D+1.

8000 0000 to 7FFF FFFF hex
(-2,147,483,648 to
2,147,483,647)

Circu-
lar
Mode

0000 0000 to FFFF FFFF hex
(0 to 4,294,967,295)
413

High-speed Counter/Pulse Output Instructions Section 3-19
Execution Conditions Reading the High-speed counter PV, High-speed Counter Latch Value, Pulse
Output PV, Pulse Counter PV (Time measurement), Elapsed Time of the One-
shot Pulse Output, or Analog Input Value

To read the desired value, execute PRV(881) with P set to #0001, #0002,
#0003, or #0004, C set to #0000, and D set to the first word address where
the value will be stored.

Note 1. The high-speed counter PVs read with PRV(881) are the same as the val-
ues stored in A600 and A601 (port 1 PV) and A602 and A603 (port 2 PV),
but those Auxiliary Area words are refreshed just once each cycle whereas
the value read with PRV(881) always provides the most recent data.

2. The pulse output PVs and pulse output counter PV (time measurement
PVs) read with PRV(881) are the same as the values stored in A620 and
A621 (port 1 PV) and A622 and A623 (port 2 PV), but those Auxiliary Area
words are refreshed just once each cycle whereas the value read with
PRV(881) always provides the most recent data.

Flags

Examples

■ Example 1

When CIO 0000.00 goes from OFF to ON in the following programming exam-
ple, the latch input is enabled and the high-speed counter PV is latched if the
latch input is ON.

When the Count Latched Flag goes from OFF to ON, PRV(881) reads the
latched high-speed counter 0 PV and stores it in words CIO 0101 and
CIO 0100.

■ Example 2

When CIO 0001.00 goes from OFF to ON in the following programming exam-
ple, PRV(881) reads the most recent pulse output counter PV and stores it as
a hexadecimal value in D00200 and D00201.

Name Label Operation

Error Flag ER ON if the combination of P and C is not allowed. (For
example, ON if P = #0003 and C = #0001.)
ON if P is set to a value other than #0001, #0002, #0003,
or #0004.

ON if C is set to a value other than #0000 or #0001.
ON if an instruction controlling pulse I/O or a high-speed
counter is being executed in the main program, an inter-
rupt occurs, and PRV(881) is executed in the interrupt
task.
OFF in all other cases.

0000.00

@PRV

#1

#2

0100

A608.08

A610.08 Latch Input 1 Enable Bit

High-speed counter input 0

Read high-speed counter latch value
414

High-speed Counter/Pulse Output Instructions Section 3-19
3-19-3 REGISTER COMPARISON TABLE: CTBL(882)
Purpose Use CTBL(882) to register a comparison table and compare the table values

with a high-speed counter PV or pulse output counter PV. Either target value
or range comparisons are possible. An interrupt task is executed when a
specified condition is met.

When performing range comparisons, a bit pattern is output internally when
the PV is within a specified range.

It is also possible to register a comparison table without starting the compari-
son. Once the table is registered, the comparison operation can be started/
stopped with INI(880).

When performing high-speed analog sampling, CTBL(882) starts the sam-
pling operation.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier
P specifies the port for which pulses are to be counted as shown in the follow-
ing table.

PRV

#3

#0

D00200

0001.00

Pulse output counter 0

CTBL(882)

P

M

TB

P: Port specifier
M: Mode specifier
TB: First comparison table word

Variations Executed Each Cycle for ON Condition CTBL(882)

Executed Once for Upward Differentiation @CTBL(882)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

#1 High-speed counter 1

#2 High-speed counter 2

#3 Pulse output 1 or Sampling counter

#4 Pulse output 2
415

High-speed Counter/Pulse Output Instructions Section 3-19
M: Mode Specifier
The function of CTBL(882) is determined by the mode specifier, M, as shown
in the following table.

TB: First Comparison Table Word
TB is the first word of the comparison table. The structure of the comparison
table depends on the type of comparison being performed.

• Target Value Comparison

For target value comparison, the length of the comparison table is deter-
mined by the number of target values specified in TB. The table can be be-
tween 4 and 145 words long, as shown below.

M CTBL(882) function

#0 For a counter or pulse output, this mode registers a target value compari-
son table and starts comparison.
For a sampling counter, this mode registers a target value comparison
table, clears the sampling counter to 0, and starts sampling.

#1 For a counter or pulse output, this mode starts range comparison.
For a sampling counter, this mode starts sampling without clearing the
sampling counter to 0.

#2 Registers a target value comparison table.

TB+1

TB+2

TB+3

TB

015

0347811121415

TB+142

TB+143

TB+144

78

Lower word of target value 1

Upper word of target value 1

Interrupt task number for target value 1

0000 0000 to FFFF FFFF hex

0000 0000 to FFFF FFFF hex

No. of values2

Interrupt Task Number

Interrupt task number3

 0000 to 0031 hex (0 to 49)

Lower word of target value 48

Upper word of target value 48

Interrupt task number for target value 48

Direction1

Note 1. Set 00 for incrementing or F0 for decrementing.
2. Setting range: 01 to 30 hex (1 to 48 target values)
3. Set the interrupt task number to FFFF hex to disable comparison.
416

High-speed Counter/Pulse Output Instructions Section 3-19
• Range Comparison

For range comparison, the length of the comparison table is determined by
the number of ranges specified in TB. The table can be between 6 and 81
words long, as shown below.

Operand Specifications

Description CTBL(882) registers a comparison table and starts comparison (with a high-
speed counter PV or pulse output counter PV) for the port specified in P and
the method specified in M. Once a comparison table is registered, it is valid
until a different table is registered or until the Motion Control Module is
switched to PROGRAM mode.

Each time CTBL(882) is executed, comparison is started under the specified
conditions. When using CTBL(882) to start comparison, it is normally suffi-
cient to use the differentiated variation (@CTBL(882)) of the instruction or an
execution condition that is turned ON only for one cycle.

Note If the comparison table specifies an interrupt task number that is not in the
program, a program error (fatal error) will occur when that interrupt is called.

TB+1

TB+2

TB+3

TB+4

TB+5

015

TB+76

TB+77

TB+78

TB+79

TB+80

Lower word of range 1 lower limit

Upper word of range 1 lower limit

Lower word of range 1 upper limit

Upper word of range 1 upper limit

Output pattern

0000 0000 to FFFF FFFF hex (See note.)

0000 0000 to FFFF FFFF hex (See note.)

0000 0000 to FFFF FFFF hex (See note.)

0000 0000 to FFFF FFFF hex (See note.)

Lower word of range 16 lower limit

Upper word of range 16 lower limit

Lower word of range 16 upper limit

Upper word of range 16 upper limit

Output pattern

0000 to 0010 hex

0000 to FFFF hex

0000 to FFFF hex

Number of ranges

Area P M TB

CIO Area --- --- CIO 0000 to CIO 0252

Work Area --- --- W000 to W252

Auxiliary Bit Area --- --- A448 to A646

Timer Area --- --- T0000 to T0252

Counter Area --- --- C0000 to C0252

DM Area --- --- D00000 to D32764

Indirect DM addresses
in binary

--- --- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- --- *D00000 to *D32767

Constants See operand
description.

See operand
description.

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or
–2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
417

High-speed Counter/Pulse Output Instructions Section 3-19
■ Registering a Target Value Comparison Table (M = #0002)

If M is set to #0002, CTBL(882) registers a comparison table to compare the
high-speed counter PV or pulse output counter PV, but does not start compar-
ison. In this case, start comparison separately with INI(880).

■ Registering a Target Value Comparison Table and Starting Comparison
(M = #0000)

If M is set to #0000, CTBL(882) registers a comparison table to compare the
high-speed counter PV or pulse output counter PV, and starts the compari-
son.

■ Stopping Comparison

Use INI(880) to stop comparison operations started with either CTBL(882) or
INI(880).

■ Target Value Comparison Operation

Target value comparison compares the PV with a list of preset target values.
Up to 48 target values can be registered in the table and the target values are
compared in the order in which they appear in the table. When the PV
matches a target value, CTBL(882) performs the following operations and
then moves to the next target value in the table.

Execution of the Interrupt Task (FQM1-MMP21 and FQM1-MMA21)

The first comparison target value is determined by the direction setting (in the
leftmost byte of TB) and the high-speed counter’s PV, as follows.

• Direction = 00 hex: Incrementing

Compares target values with the PV from the beginning of the table. The
first target value in the table that is greater than the PV is used as the first
comparison target value.

• Direction = F0 hex: Decrementing

Compares target values with the PV from the beginning of the table. The
first target value in the table that is less than the PV is used as the first com-
parison target value.

If the direction setting is inappropriate (incrementing specified but all target
values are less than the PV or decrementing specified but all target values are
greater than the PV), the first target value registered in the table will be used
as the first comparison target value.

High-speed counter PV

Target value 1

Target value 2

Target value 48

Match

Execute interrupt task

Execute interrupt task

Execute interrupt task
418

High-speed Counter/Pulse Output Instructions Section 3-19
Target Value Comparison Table Structure
(FQM1-MMP21 and FQM1-MMA21)

Note 1. Set the direction to 00 hex when incrementing or F0 hex when decrement-
ing.

2. Set the number of target value entries between 01 and 30 hex (1 to 48).

Set interrupt task numbers between 0000 and 0031 hex. The same interrupt
task number can be used for multiple target value entries.

When interrupt processing is not required, set the interrupt task number to
FFFF hex to disable interrupt processing for that target value entry.

The comparison operation can be stopped with INI(880). Once a comparison
table is registered, it is valid until a different table is registered or until the
Motion Control Module stops operating.

■ Range Comparison Operation (M = #0001)

Range comparison compares the PV with target ranges defined by a lower
limit and an upper limit. Up to 16 ranges (lower and upper limit pairs) can be
set in the table.

The comparison operation is performed each time CTBL(882) is executed,
and all of the entries in the comparison table are evaluated starting from the
beginning of the table. The comparison results are output as flags (bits 0 to 15
correspond to ranges 1 to 16) with the corresponding bit ON when the com-
parison result is true. The flags are output to the Auxiliary Area word allocated
to the port (words A612 to A615 for the high-speed counters and A630 to
A633 for the pulse outputs).

At the same time, the specified output bit pattern is stored in the allocated
word (A613 or A615 for the high-speed counters and A631 or A633 for the
pulse outputs). When several comparison conditions are met at the same
time, the output patterns are all ORed and the OR result is stored as the
result.

High-speed Counter 1: Range comparison result = A612
Output pattern destination = A613

High-speed Counter 2: Range comparison result = A614
Output pattern destination = A615

Pulse Output 1: Range comparison result = A630
Output pattern destination = A631

Word Leftmost byte (bits 08
to 15)

Rightmost byte (bits
08 to 15)

Function

TB Direction (See note 1.) Number of target val-
ues (See note 2.)

Table definition

TB+1 Target value (rightmost 4 digits, hexadecimal) One target value entry
(Set the number of
entries specified in TB.)

TB+2 Target value (leftmost 4 digits, hexadecimal)

TB+3 Interrupt task number (0000 to 0031, hexadeci-
mal)

High-speed counter PV

Lower limit 1 ... Upper limit 1

Lower limit 2 ... Upper limit 2

Lower limit 16 ... Upper limit 16

Comparison

Bit 00 of A612 or A614

Bit 15 of A612 or A614

Bit 01 of A612 or A614
419

High-speed Counter/Pulse Output Instructions Section 3-19
Pulse Output 2: Range comparison result = A632
Output pattern destination = A633

Range Comparison Table Structure

• Overlapping ranges can be specified.

• If the lower and upper limit values are reversed in linear mode, the com-
parison operation will not function properly, but an error will not occur. In
linear mode, always set the upper limit ≥ lower limit.

■ High-speed Analog Sampling (M = #0000, FQM1-MMA21 Only)

This function stores the analog input data in the specified DM words of an
FQM1-MMA21 Motion Control Module.

The high-speed analog sampling function stores the analog input value in the
specified DM Area location (starting at TB+2) each time that the sampling
counter PV matches the target value specified in TB and TB+1. Sampling
stops automatically when the desired number of analog input samples (speci-
fied in TB+3) have been stored.

In order to use the high-speed analog sampling function, the input method
must be set to Immediate refresh in the System Setup’s Analog Input/Output
Tab.

Table Structure

The following table shows the function of the table words

Word Content Function

TB Number of ranges in table (0001 to 0010 hex) Table definition

TB+1 Lower limit 1 (rightmost 4 digits, hexadecimal) One range entry

(Set the number of range
entries specified in TB.)

TB+2 Lower limit 1 (leftmost 4 digits, hexadecimal)

TB+3 Upper limit 1 (rightmost 4 digits, hexadecimal)

TB+4 Upper limit 1 (leftmost 4 digits, hexadecimal)

TB+5 Output pattern

Word Content

TB Target value (rightmost 4 digits, hexadecimal)

TB+1 Target value (leftmost 4 digits, hexadecimal)

TB+2 First DM word for storage of analog input sample

(Set a DM Area offset address between 0000 and 7FFF hex.)

TB+3 Number of samples
(Specifies the number of samples to store. Set between 0001 and 8000 hex.)
420

High-speed Counter/Pulse Output Instructions Section 3-19
Precautions Do not change the maximum circular counter value when performing a com-
parison in circular mode.

When using target value comparisons, set target values that allow an interval
greater than the “interrupt overhead time + interrupt task processing time”
after the interrupt is generated.

Do not perform target value comparisons on the pulse output counter when
using one of the following operation modes for pulse outputs. The pulse out-
put will not operate properly if target value comparisons are performed.

• Independent mode (positioning)

• Electronic Cam mode

• One-shot pulse output mode

Counting will start when the count start bit goes ON or the pulse output
begins, but interrupt tasks will not be called until the comparison operation is
started.

Use INI(880) to stop the target value comparison.

Once a target value comparison table is registered, it is valid until a different
table is registered or until the Motion Control Module stops operating. The
cycle time can be reduced by executing the up-differentiated variation of
CTBL(882) only when necessary.

Execution Conditions for
each Function

1. Registering the Target Value Comparison Table and Starting Comparison

To register the target value comparison table and start the comparison, ex-
ecute CTBL(882) with P set to #0001, M set to #0000, and TB set to the
address of the first word of the comparison table. Since the comparison op-
eration will continue after CTBL(882) is executed one time, use either the
up-differentiated variation of the instruction (@CTBL(882)) or an execution
condition that is ON for just one cycle.

2. Starting Range Comparison

To perform range comparison, execute CTBL(882) with P set to #0001, M
set to #0001, and TB set to the address of the first word of the comparison
table. When CTBL(882) is executed with these conditions, the PV is com-

Name Label Operation

Error Flag ER ON if P is set to a value other than #0001, #0002, #0003,
or #0004.
ON if M is set to a value other than #0000, #0001, or
#0002.
ON if one of the following errors is detected in a target
value comparison table.

• ON if TB is not 01 to 30 hex.
• In circular mode, ON if the content of TB+1 and TB+2

(target value) exceeds the maximum circular counter
value.

• ON if TB+3 (interrupt task number) contains a value
other than #0000 to #0031 or #FFFF.
ON if all of the interrupt task numbers in the table are
set to #FFFF (disabled).

ON if TB is not #0001 to #0010 hex in a range comparison
table.
ON if an instruction controlling a high-speed counter is
being executed in the main program, an interrupt occurs,
and CTBL(882) is executed in the interrupt task.
OFF in all other cases.
421

High-speed Counter/Pulse Output Instructions Section 3-19
pared just once to the ranges specified in the table. The comparison oper-
ation does not continue.

3. Registering the Target Value Comparison Table Only

To just register the target value comparison table, execute CTBL(882) with
P set to #0001, M set to #0002, and TB set to the address of the first word
of the comparison table.

4. Starting High-speed Analog Sampling

To start high-speed analog sampling, execute CTBL(882) with P set to
#0003, M set to #0000 or #0001, and TB set to the address of the first word
of the comparison settings table. Once CTBL(882) is executed, the com-
parison operation will continue until the FQM1-MMA21 Motion Control
Module has stored the number of samples specified in TB+3. Since CT-
BL(882) needs to be executed just one time, use either the up-differentiat-
ed variation of the instruction (@CTBL(882)) or an execution condition that
is ON for just one cycle.

If M is set to #0000, the sampling counter will be cleared to 0 when sam-
pling starts. If M is set to #0001, the sampling counter will not be cleared
to 0.

Example When CIO 0000.00 goes from OFF to ON in the following programming exam-
ple, CTBL(882) registers a target value comparison table and starts compari-
son for high-speed counter 1. The PV of the high-speed counter is counted
incrementally and when it reaches 500, it equals target value 1 and interrupt
task 1 is executed. When the PV is incremented to 1,000, it equals target
value 2 and interrupt task 2 is executed.

3-19-4 SPEED OUTPUT: SPED(885)
Purpose SPED(885) is used to set the output pulse frequency for a specific port and

start pulse output without acceleration or deceleration. Either independent
mode positioning or continuous mode speed control is possible. For indepen-
dent mode positioning, the number of pulses is set using PULS(886).

SPED(885) can also be executed during pulse output to change the target fre-
quency of the current pulse outputs, creating stepped speed changes. This
instruction is supported by the FQM1-MMP21 and FQM1-MMA21 only.

Ladder Symbol

@CTBL

#1

#0

D00100

0002

01F4

0000

0001

03E8

0000

0002

0000.00
D00100

D00101

D00102

D00103

D00104

D00105

D00106

Two target values

Target value 1: 0000 01F4 hex (500)

Incrementing, Interrupt task number 1

Target value 2: 0000 03E8 hex (1,000)

Incrementing, Interrupt task number 2

Register target comparison table
and start comparison.

High-speed counter input 1

SPED(885)

P

M

F

P: Port specifier
M: Output mode
F: First target frequency/analog output word
422

High-speed Counter/Pulse Output Instructions Section 3-19
Variations

Applicable Program Areas

Operands P: Port Specifier
The port specifier specifies the port where the pulses will be output.

M :Output Mode
The value of M determines the output mode.

F: First Frequency Word or First Analog Output Word

• Pulse Outputs (F = First Frequency Word)

The allowed frequency setting range is slightly different when F is specified
as a constant or word address.

The target frequency can be set between 1 Hz and 1 MHz, but the frequen-
cy that can actually be output depends on the clock frequency. Refer to 7-
6-4 Pulse Output Specifications in the FQM1 Series Flexible Motion Con-
troller Operation Manual (Cat. No. O010) to verify the allowed output
range. An error will occur and the instruction will not be executed if the
specified frequency exceeds the allowed output range. If the specified fre-
quency is below the allowed output range, the lower limit frequency will be
output.

The output frequencies are obtained by dividing the Motion Control Mod-
ule’s clock pulse with an integer dividing ratio, meaning the actual output
frequency can be different from the set frequency. (Refer to Precautions
when Using Pulse Outputs in the FQM1 Series Flexible Motion Controller
Operation Manual (Cat. No. O010) for details.)

Variations Executed Each Cycle for ON Condition SPED(885)

Executed Once for Upward Differentiation @SPED(885)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

#1 FQM1-MMP21: Pulse output 1
FQM1-MMA21: Analog output 1

#2 FQM1-MMP21: Pulse output 2
FQM1-MMA21: Analog output 2

Output Value of M Mode

Pulse output #0000 Continuous, CW

#0001 Continuous, CCW

#0002 Independent, CW

#0003 Independent, CCW

Analog output #0000 (fixed) ---

Setting method Setting

Constant Specify the frequency in 1-Hz units.
Range: #0000 0000 to #000F 4240 (0 to 1 MHz)

Word address Specify the frequency in 1-Hz units.
Range: #0000 0000 or #0000 0001 to #000F 4240 (1 to 1
MHz)
F: Rightmost 4 digits
F+1: Leftmost 4 digits
423

High-speed Counter/Pulse Output Instructions Section 3-19
• Analog Outputs (F = First Analog Output Word)

Sets the value that will be output from the analog output port. Specify the
value in 4-digit hexadecimal.

• −10 to +10 V Range:
EC78 to 1388 hex (–5,000 to 5,000 decimal) (resolution: 10,000) cor-
responding to 0% to 100% voltage (–10 to 10 V)
The possible setting range is actually EA84 to 157C (–5,500 to 5,500
decimal) corresponding to –5% to 105% voltage (–11 to 11 V)

• 0 to 10 V, 0 to 5 V, and 1 to 5 V Ranges:
0000 to 0FA0 hex (0000 to 4,000 decimal) (resolution: 4,000) corre-
sponding to 0% to 100% of the FS range. (Actually, the setting range
is FF38 to 1068 (–200 to 4,200 decimal) corresponding to –5% to
105% voltage (–0.5 to 10.5 V, –0.25 to 5.25 V, or 0.8 to 5.2 V).)

Note An error will occur and the ER Flag will be turned ON if the settings
are outside of the ranges listed above.

Operand Specifications

Execution Conditions for
Pulse Output Functions
(FQM1-MMP21)

1. Pulse Output in Independent Mode (Positioning) in the CW Direction:
(Outputs just the Number of Pulses specified with PULS(886).)

Execute SPED(885) with P set to #0001 or #0002, M set to #0002, and F
set to the target frequency.

2. Pulse Output in Independent Mode (Positioning) in the CCW Direction:
(Outputs just the Number of Pulses specified with PULS(886).)

Execute SPED(885) with P set to #0001 or #0002, M set to #0003, and F
set to the target frequency.

3. Pulse Output in Continuous Mode (Speed Control) in the CW Direction

Execute SPED(885) with P set to #0001 or #0002, M set to #0000, and F
set to the target frequency.

4. Pulse Output in Continuous Mode (Speed Control) in the CCW Direction

Execute SPED(885) with P set to #0001 or #0002, M set to #0001, and F
set to the target frequency.

Area P M F

CIO Area --- --- CIO 0000 to CIO 0255

Work Area --- --- W000 to W255

Auxiliary Bit Area --- --- A000 to A649

Timer Area --- --- T0000 to T0255

Counter Area --- --- C0000 to C0255

DM Area --- --- D00000 to D32767

Indirect DM addresses
in binary

--- --- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- --- *D00000 to *D32767

Constants See operand
description.

See operand
description.

See operand description.

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or
–2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
424

High-speed Counter/Pulse Output Instructions Section 3-19
5. Since SPED(885) starts the pulse output with the parameters specified in
operands P, M, and F, it needs to be executed just one time. Use either the
up-differentiated variation of the instruction (@SPED(885)) or an execution
condition that is ON for just one cycle.

6. Pulse outputs can be output independently and simultaneously from two
output ports.

Set the pulse frequency in F in 1-Hz units between 0000 0000 and
000F 4240 hex (0 Hz to 1 MHz). The pulse frequency can be set to 0 to
stop the pulse output.

The pulse output direction can be specified with operand M.

7. To generate pulse outputs with SPED(885), the pulse output operation
mode must be set to Relative pulse, Absolute pulse (Linear mode), or Ab-
solute pulse (Circular mode) in advance in the System Setup. Pulses will
not be output and an error will occur if the pulse output operation mode is
set to Electronic cam control, 1 shot, or Calculation (time measurement).

8. Any of the following methods can be used to stop pulses being output by
SPED(885).

a) Execute SPED(885) again with a target frequency of 0.

b) In independent mode (positioning), the pulse output will stop when the
number of output pulses reaches the SV set with PULS(886).

c) Execute INI(880) with C set to #0003.

d) Switch the Motion Control Module to PROGRAM mode.

Function Description

Pulses can be output in independent mode or continuous mode.

• Independent Mode (Positioning)
In independent mode, only a preset number of pulses are output. Set the
number of output pulses in advance with PULS(886).

• Continuous Mode (Speed Control)
In continuous mode, pulses are output continuously until stopped by exe-
cuting SPED(885) again with a target frequency of 0, executing INI(880)
with C = #0003, or switching the Motion Control Module to PROGRAM
mode.

In independent mode (positioning), the number of output pulses must be
specified in advance with PULS(886). (No pulses will be output if the number
of output pulses is not specified before executing SPED(885).) If the pulse
output has been stopped, it is necessary to set the number of output pulses
again with PULS(886).

Note When pulses are being output from pulse output 1 or 2 in independent mode
(positioning), the number of pulses that have been output can be monitored in
the following Auxiliary Area words:
Pulse output 1: A621 (leftmost 4 digits) and A620 (rightmost 4 digits)
Pulse output 2: A623 (leftmost 4 digits) and A622 (rightmost 4 digits)

Pulses can be output from two ports simultaneously.

• When pulses are already being output by SPED(885), SPED(885) can be
executed again to change the output frequency. Even though the fre-
quency is changed, pulses are still output in independent mode (position-
ing), so the number of output pulses does not change.

The frequency cannot be changed if pulses are already being output and
SPED(885) is executed again with a pulse output in the opposite direction.
Similarly, the frequency cannot be changed if pulses are already being out-
425

High-speed Counter/Pulse Output Instructions Section 3-19
put in independent mode, and SPED(885) is executed again in continuous
mode.

• It may not be possible to change the frequency with SPED(885) if pulses
are being output by another instruction (such as a pulse output with accel-
eration/deceleration controlled by ACC(888) or PLS2(887).) If SPED(885)
is executed to change the frequency when it cannot be changed, an error
will occur.

For details on the conditions when the frequency can be changed with
SPED(885), refer to 7-6-15 Pulse Output Starting Conditions in the FQM1
Series Flexible Motion Controller Operation Manual (Cat. No. O010).

• When independent mode positioning is performed with SPED(885) but
the CW/CCW direction is not correct for the present position and target
position, pulses will still be output in the specified direction. When Abso-
lute pulse (Linear mode) operation is being used in this case, the target
position will never be reached within the 8000 0000 to 7FFF FFFF range.
With the pulse output counter, outputs will continue without producing an
overflow or underflow even when the counter exceeds the range above.
The target value will be reached after exceeding the range.

Execution Conditions for
Analog Output Functions
(FQM1-MMA21)

1. Generating an Analog Output

Execute SPED(885) with P set to #0001 or #0002, M set to #0000, and F
set to the desired analog output value.

2. When SPED(885) is executed, the analog output is generated according
to the values specified by P, M, and F.

3. Analog outputs can be output independently and simultaneously from two
output ports.

4. Analog outputs are not distinguished as continuous or independent out-
puts. The analog output generated by SPED(885) will maintain its output
value until one of the following events occurs:

a) SPED(885) or ACC(888) is executed with a different target value.

b) The Output stop function is set to a setting other than Hold and the Mo-
tion Control Module is switched to PROGRAM mode or the Analog
Output Conversion Enable Bit (A564.00 or A565.00) is reset to 0.

Mode Description Frequency changes

Continuous
(Speed con-
trol)

Mode #0 or #1
(Continuous mode)

The frequency is changed from the present frequency
to the target frequency in one step and the pulse out-
put continues at the target frequency. The output will
continue until stopped with INI(880) or by executing
SPED(885) with a target frequency of 0.

Independent
(Positioning)

Mode #2 or #3
(Independent mode)
The frequency is changed to the target frequency in
one step and the pulse output continues until the num-
ber of pulses specified with PULS(886) have been out-
put.

(With independent mode, the number of pulses must
be set in advance with PULS(886) and the output
operates according to that setting.)

Frequency

Target frequency
(F and F+1)

Present frequency

SPED(885) executed.

Time

Pulse output continues until execution of INI (880)
with C = #3, SPED(885) with a target frequency of
0, or ACC(888) with a target frequency of 0.

Frequency

Target frequency
(F and F+1)

SPED(885)
executed.

Time

Specified number of pulses
(Specified with PULS(886).)

Stops after specified number
of pulses are output.
426

High-speed Counter/Pulse Output Instructions Section 3-19
5. The present analog output value will be changed if SPED(885) is executed
again while an analog output value is being output or the analog output tar-
get value has been reached after execution of ACC(888).

6. The present analog output value will not be changed and an error will occur
if SPED(885) is executed by interrupting an existing SPED(885) analog
output or ACC(888) has been executed to generate an analog output but
the target value has not been reached.

7. In order to generate analog outputs with SPED(885) or ACC(888), the out-
put method must be set to Immediate refresh in the System Setup’s Ana-
log Input/Output Tab. If the output method is set to End refresh, an error
will occur and an analog output will not be generated by SPED(885) or
ACC(888).

Flags

Example When CIO 0000.00 goes from OFF to ON, PULS(886) sets the number of out-
put pulses for pulse output 1 to a relative value of 5,000 pulses. SPED(885) is
executed next to start pulse output using the CW/CCW method in the clock-
wise direction in independent mode at a target frequency of 500 Hz.

Name Label Operation

Error Flag ER ON if P is set to a value other than #0001 or #0002.
For the FQM1-MMP21, ON if F is not set between #0 and
#F4240.

For the FQM1-MMA21, ON if F is not in range.
• −10 to +10 V Range:

ON if F is not between EA84 and 157C.
• 0 to 10 V, 0 to 5 V, and 1 to 5 V Ranges:

ON if F is not between FF38 and 1068.
For the FQM1-MMP21, ON if the specified frequency is
not supported at the selected Motion Control Module
clock frequency.
For the FQM1-MMP21, ON if SPED(885) is executed
when the present pulse output cannot be changed.
(For example, the pulse output cannot be changed when
pulses are being output by ACC(888) and the target value
has not been reached.)

For the FQM1-MMA21, ON if SPED(885) is executed
when the present analog output cannot be changed.
(For example, the analog output value cannot be changed
when ACC(888) is outputting an analog output and the
target value has not been reached.)
ON if an instruction controlling pulse or analog I/O is
being executed in the main program, an interrupt occurs,
and SPED(885) is executed in the interrupt task.
OFF in all other cases.
427

High-speed Counter/Pulse Output Instructions Section 3-19
3-19-5 SET PULSES: PULS(886)
Purpose PULS(886) sets the number of output pulses for independent mode pulse out-

puts that are started later in the program. PULS(886) can also be used to set
the number of output pulses and frequency for electronic cam control.

• Independent Mode

PULS(886) sets the number of output pulses to be output in an indepen-
dent mode (positioning) operation. The specified number of output pulses
will be output when SPED(885) or ACC(888) is executed in independent
mode.

• Electronic Cam Control

PULS(886) sets the number of output pulses, sets the frequency, and
starts the pulse output.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier

@PULS

#1

#0

D00100

1388

0000

0000.00

@SPED

#1

#2

D00110

D00100

D00101

01F4

0000

D00110

D00111

Number of output pulses: 5,000

Target frequency: 500 Hz

Time

5,000 pulses

Target frequency:
500 Hz

Pulse frequency

PULS(886) and
SPED(885) executed.

Pulse output 1

Relative pulses

Pulse output 1

CW/CCW output,
CW, Independent

PULS(886)

P

T

N

P: Port specifier
T: Pulse type
N: First number of pulses word

Variations Executed Each Cycle for ON Condition PULS(886)

Executed Once for Upward Differentiation @PULS(886)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

#1 Pulse output 1

#2 Pulse output 2
428

High-speed Counter/Pulse Output Instructions Section 3-19
T: Pulse Type
T specifies the type of pulses that are output as follows:

Note 1. To specify a relative pulse output, the pulse output operation mode must
be set to Relative pulse in the System Setup.

2. To specify an absolute pulse output, the pulse output operation mode must
be set to Absolute pulse (Linear mode) or Absolute pulse (Circular mode)
in the System Setup.

3. To perform electronic cam control, the pulse output operation mode must
be set to Electronic cam control in the System Setup.

N: First Number of Pulses Word
For a relative pulse output, specify the number of output pulses. For an abso-
lute pulse output, specify the target position.

The number of pulses actually output depends on the pulse type, as shown
below.

• Relative pulses:
Actual number of pulses = Number of output pulses SV

• Absolute pulses:
Actual number of pulses = Number of output pulses SV − PV

The output frequency can be set between 1 Hz and 1 MHz, but the frequency
that can actually be output depends on the clock frequency. Refer to 7-6-4
Pulse Output Specifications in the FQM1 Series Flexible Motion Controller
Operation Manual (Cat. No. O010) to verify the allowed output range. An error
will occur and the instruction will not be executed if the specified frequency
exceeds the allowed output range. If the specified frequency is below the
allowed output range (except 0000 0000), the lower limit frequency will be out-
put. If the output frequency is set to 0000 0000, the instruction will be treated
as NOP(000) and the output status will be maintained.

T Pulse type Notes

#0 Relative pulse output See note 1.

#1 Absolute pulse output See note 2.

#2 Pulse output with absolute position specified See note 3.

Words Function Setting
range

Conditions

N+1,
N

Number of output
pulses or specified
position (8-digit
hexadecimal)

0000 0000 to
FFFF FFFF

Specifies the number of output
pulses when relative pulse output is
selected.

8000 0000 to
7FFF FFFF

Specifies the target position when
absolute (linear mode) pulse output is
selected.

0000 0000 to
Maximum cir-
cular counter
value

Specifies the target position when
absolute (circular mode) pulse output
is selected.

8000 0000 to
7FFF FFFF

Specifies the target position when
electronic cam control is selected.

N+3,
N+2

Pulse output fre-
quency (8-digit hexa-
decimal), only when
T = #2

0000 0001 to 000F 4240 hex (1 Hz to 1 MHz)
429

High-speed Counter/Pulse Output Instructions Section 3-19
Operand Specifications

Description PULS(886) sets the pulse type and number of pulses specified in T and N for
the port specified in P. Actual output of the pulses is started later in the pro-
gram using SPED(885) or ACC(888) in independent mode.

An error will occur if PULS(886) is executed while pulses are being output, so
the number of output pulses cannot be changed. Execute this instruction with
either the up-differentiated variation of the instruction (@PULS(886)) or an
execution condition that is ON for just one cycle.

Once the number of pulses is determined by executing PULS(886), the calcu-
lated number of pulses will not be changed even if INI(880) is executed to
change the pulse output PV.

When the number of pulses is set for absolute pulse output, the Motion Con-
trol Module ignores the CW/CCW direction specified as an operand in
SPED(885) or ACC(888).

It is also possible to specify values to move outside of the number of output
pulses PV range (−2,147,483,648 to +2,147,483,647).

Execution Conditions 1. Setting the Number of Output Pulses for Relative Pulse Output

To set the number of output pulses for a relative pulse output, execute
PULS(886) with P set to #1 or #2, T set to #0, and the number of output
pulses set in N and N+1.

2. Setting the Target Position for Absolute Pulse Output

To set the target position for an absolute pulse output, execute PULS(886)
with P set to #1 or #2, T set to #1, and the target position set in N and N+1.

3. Setting the Target Position for Electronic Cam Control and Starting the
Output

To set the target position for electronic cam control and start the pulse out-
put, execute PULS(886) with P set to #1 or #2, T set to #2. Set the target
position in N and N+1 and the frequency in N+2 and N+3.

4. When PULS(886) was executed to start electronic cam control and the tar-
get position has been reached, the pulse output will stop automatically.

Area P T N

CIO Area --- --- CIO 0000 to CIO 0254

Work Area --- --- W000 to W254

Auxiliary Bit Area --- --- A448 to A648

Timer Area --- --- T0000 to T0254

Counter Area --- --- C0000 to C0254

DM Area --- --- D00000 to D32766

Indirect DM addresses
in binary

--- --- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- --- *D00000 to *D32767

Constants See operand
description.

See operand
description.

See operand description.

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or
–2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
430

High-speed Counter/Pulse Output Instructions Section 3-19
The pulse output direction and number of pulses are determined by the fol-
lowing formulae:

5. The number of pulses actually output depends on the pulse type, as shown
below.

Relative pulses:
Actual number of pulses = Specified number of output pulses

Absolute pulses:
Actual number of pulses = |Present position – target position|

6. If PULS(886) was executed to start a pulse output in electronic cam control
mode and the pulses are still being output, PULS(886) can be executed in
electronic cam control mode again to change the target position and pulse
output frequency.

Note a) When the pulse output direction is reversed by the absolute posi-
tion specified in electronic cam control, the pulse output will be
forcibly stopped after completing one output pulse. The pulse
wave will not be interrupted abruptly, but the remaining pulses will
not be output. After the output is stopped, pulses will not be output
automatically in the opposite direction. The output will start when
another pulse output instruction is executed.
If another instruction is executed in the opposite direction of the
current movement before the axis is forcibly stopped, the instruc-
tion will not be executed. It may take some time to forcibly stop
movement when the pulse output frequency is low.

Value Formula

Direction PV < Target: CW direction,
PV > Target: CCW direction
PV = Target: Maintain status

Number of pulses |PV of pulse output – target pulse amount|

Pulse
frequency

Target frequency
(N+3, N+2)

Present frequency

PULS(886)
executed

Number of pulses =
|Present position − Target position|
Execution during PULS(886) execution
enables changing value.

Number of pulses output
and output stopped.

Specifies a position in
the CCW direction.

CW direction

CCW direction

PULS(886)
instruction

Output is forcibly stopped after outputting one pulse.

The remaining pulse output is canceled.

After stopping output,
execute another instruction
to start output again.

Specifies a position 4
pulses in the CW direction.
431

High-speed Counter/Pulse Output Instructions Section 3-19
b) If a previously executed PULS(886) instruction reaches its target
position while another PULS(886) instruction is being executed,
the pulse output will be stopped and the later instruction will not be
executed. In this case, execute PULS(886) again. The EQ Flag will
go OFF in this case.

7. If a PULS(886) instruction is executed during an independent mode (posi-
tioning) pulse output, the number of output pulses or target position will not
be set again. (The number of output pulses and target position cannot be
changed during an independent mode pulse output.) Execute this instruc-
tion with either the up-differentiated version of the instruction
(@PULS(886)) or an execution condition that is ON for just one cycle.

8. The pulse output operation mode must be set to Electronic cam control in
order to perform electronic cam control. If a different operation mode is se-
lected, PULS(886) will not be executed and an error will occur.

9. Any of the following methods can be used to stop pulses being output in
electronic cam control mode by PULS(886).

a) Execute INI(880) with C set to #0003 (immediate stop).

b) The pulse output will stop when the target position is reached (imme-
diate stop).

c) Switch the Motion Control Module to PROGRAM mode.

10. Pulse outputs can be output independently and simultaneously from two
output ports.

11. When the pulse output operation mode is set to Absolute pulse (Linear
mode) and the specified target position is the same as the present position,
PULS(886) will not be executed and the target position will not be set. The
EQ Flag will go OFF in this case.

Flags

Example When CIO 0000.00 goes from OFF to ON in the following programming exam-
ple, PULS(886) sets the number of output pulses for pulse output 1. A relative
value of 5,000 pulses is set. SPED(885) is executed next to start pulse output
using the CW/CCW method in the clockwise direction in independent mode at
a target frequency of 500 Hz.

Name Label Operation

Error Flag ER ON if P is set to a value other than #1 or #2.
ON if T is set to a value other than #0, #1, or #2.

ON if the pulse output operation mode is set to 1 shot or
Calculation (time measurement) mode in the System
Setup.

ON if an instruction controlling pulse output is being exe-
cuted in the main program, an interrupt occurs, and
PULS(886) is executed in the interrupt task.

OFF in all other cases.

Equal Flag = Operation when T is set to #0 or #1:

• ON when the target position is set with PULS(886).
• OFF when the target position could not be set with

PULS(886).
Operation when T is set to #2:

• ON when the pulse output is started by PULS(886).
• OFF when the pulse output could not be started by

PULS(886).
432

High-speed Counter/Pulse Output Instructions Section 3-19
3-19-6 PULSE OUTPUT: PLS2(887)
Purpose PLS2(887) outputs pulses to the specified port based on the specified target

position, target frequency, startup frequency, acceleration rate, and decelera-
tion rate. The acceleration rate and deceleration rate can be set separately.
Only independent mode positioning is supported.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier
The port specifier indicates the port.

M: Output Mode

S: First Word of Settings Table

@PULS

#1

#0

D00100

0000.00

@SPED

#1

#0

D00100

1388

0000

D00100

D00101

01F4

0000

D00110

D00111

Pulse output 1

Relative mode

Pulse output 1

CW/CCW output, CW direction,
independent mode

Number of output pulses: 5,000

Target frequency: 500 Hz

PLS2(887)

P

M

S

P: Port specifier
M: Output mode
S: First word of settings table

Variations Executed Each Cycle for ON Condition PLS2(887)

Executed Once for Upward Differentiation @PLS2(887)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

#1 Pulse output 1

#2 Pulse output 2

M Mode

#0 CW direction

#1 CCW direction

Word Content

T Target position (8-digit hexadecimal)
Relative pulse output: 0000 0000 to FFFF FFFF
Absolute pulse output (linear mode): 8000 0000 to 7FFF FFFF

T+1

T+2 Target frequency (8-digit hexadecimal)
0000 0001 to 000F 4240T+3

T+4 Starting frequency (8-digit hexadecimal)
0000 0000 to 000F 4240T+5
433

High-speed Counter/Pulse Output Instructions Section 3-19
The acceleration rate and deceleration rate specify the amount that the fre-
quency will be changed each 2 ms or 1 ms. Set the rates in 1-Hz units. The
0001 to 270F hex setting range corresponds to a 1 Hz to 9.999 kHz range.)

The target frequency specifies the frequency reached after acceleration. Set
the frequency in 1-Hz units. (The 0000 0001 to 000F 4240 hex setting range
corresponds to a 1 Hz to 1 MHz range.)

The starting frequency specifies the frequency at which the output starts. Set
the frequency in 1-Hz units. (The 0000 0000 to 000F 4240 hex setting range
corresponds to a 0 Hz to 1 MHz range.)

Note 1. The target frequency can be set between 1 Hz and 1 MHz and the starting
frequency can be set between 0 Hz and 1 MHz. But the frequency that can
actually be output depends on the clock frequency. Refer to 7-6-4 Pulse
Output Specifications in the FQM1 Series Flexible Motion Controller Oper-
ation Manual (Cat. No. O010) to verify the allowed output range. An error
will occur and the instruction will not be executed if the specified frequency
exceeds the allowed output range. If the specified frequency is below the
allowed output range, the lower limit frequency will be output.

2. The output frequencies are obtained by dividing the Motion Control Mod-
ule’s clock pulse with an integer dividing ratio, meaning the actual output
frequency can be different from the set frequency.
Also, the pulse frequencies actually output during acceleration/decelera-
tion are frequencies that can actually be output with the integer dividing ra-
tio. If the acceleration or deceleration rate is low, there may not be an
change in the frequency in every 2 ms interval.
Refer to Precautions when Using Pulse Outputs in the FQM1 Series Flex-
ible Motion Controller Operation Manual (Cat. No. O010) for details.

Operand Specifications

T+6 Acceleration rate (4-digit hexadecimal)
0001 to 270F

T+7 Deceleration rate (4-digit hexadecimal)
0001 to 270F

Word Content

Area P M S

CIO Area --- --- CIO 0000 to CIO 0248

Work Area --- --- W000 to W248

Auxiliary Bit Area --- --- A448 to A642

Timer Area --- --- T0000 to T0248

Counter Area --- --- C0000 to C0248

DM Area --- --- D00000 to D32760

Indirect DM
addresses in binary

--- --- @ D00000 to @ D32767

Indirect DM
addresses in BCD

--- --- *D00000 to *D32767

Constants See operand
description.

See operand
description.

Index Registers --- --- ---

Indirect addressing
using Index Regis-
ters

--- --- ,IR0 or ,IR1

–2048 to +2047 ,IR0 or
–2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1
434

High-speed Counter/Pulse Output Instructions Section 3-19
Description PLS2(887) operation proceeds as described below.

1. PLS2(887) starts a pulse output at the specified starting frequency and ac-
celerates the output each 1 ms or 2 ms by the specified frequency step.

2. When the target frequency is reached, the frequency acceleration stops
and the pulse output continues at a constant frequency.

3. When the distance to the target position (calculated number of pulses from
the target position) reaches the deceleration point calculated from the de-
celeration rate and frequency, PLS2(887) decelerates the output each
1 ms or 2 ms by the specified frequency step. PLS2(887) stops the pulse
output at the target position.

If the specified number of pulses is too low for the acceleration and decelera-
tion stages, PLS2(887) will not perform trapezoidal acceleration/deceleration.
The pulse output will start decelerating before the target frequency is reached
or the pulse output may not even accelerate from the starting frequency. In
this case, the PLS2(887) Target Frequency Not Reached Flag (A624.02 or
A625.02) will turn ON.

The PLS2(887) Target Frequency Not Reached Flag is turned ON during
acceleration when the deceleration point is reached and turned OFF when
deceleration is completed.

Note PLS2(887) calculates the number of pulses required for deceleration based
on the specified target position, starting speed, and deceleration rate. This
value is known as the number of deceleration pulses and deceleration starts
when the number of remaining pulses reaches the number of deceleration
pulses. This point is known as the deceleration point.
If the total number of output pulses is less than number of deceleration
pulses, the total number of output pulses will be output resulting in triangular
control.
If the total number of output pulses is greater than number of deceleration
pulses but less than the number required for acceleration and deceleration,
the deceleration point will be reached during acceleration and deceleration
will start at that point.

Operation

When PLS2(887) is executed just once, the pulse output is controlled until it
stops with the specified settings, so use either the up-differentiated variation
of the instruction (@PLS2(887)) or an execution condition that is ON for just
one cycle.

The number of pulses actually output depends on the pulse type, as shown
below.

• Relative pulse output:
Actual number of pulses = Target position

• Absolute pulse output (linear mode):
Actual number of pulses = |Target position − Present position|
435

High-speed Counter/Pulse Output Instructions Section 3-19
T1 ≈ 0.002 × (Target frequency − Starting frequency) ÷ (Acceleration rate)

T3 ≈ 0.002 × (Target frequency − Starting frequency) ÷ (Deceleration rate)

T2 ≈ (Number of pulses −
((Target frequency + Starting frequency) × (T1+T3) ÷ 2)) ÷ Target frequency

These equations are approximations. The actual values of T1, T2, and T3 will
vary depending on the pulse output operating conditions. (The number of out-
put pulses is output accurately.)

Note 1. The stopping frequency is the same as the starting frequency. If the stop-
ping frequency is below the allowed output range (determined by the se-
lected clock frequency), the lower limit frequency will be output.

2. If the number of pulses is lower than the number required for acceleration
and deceleration, trapezoidal acceleration/deceleration will not be possible
and deceleration will begin before the target frequency is reached. When
the starting frequency has been set to 0, pulses may be output at the lower
limit output frequency for the selected clock frequency.

3. When using PLS2(887) for an absolute pulse output (linear mode), check
the present position before specifying the CW or CCW direction. Pulses
will not be output if the direction setting is incorrect for the relationship be-
tween the present position and target position. An error will occur if
PLS2(887) is executed with settings that prevent pulse output.

4. PLS2(887) will not be executed and an error will occur if a pulse output is
already being output from the specified port.

5. Any of the following methods can be used to stop pulses being output by
PLS2(887).

a) Execute INI(880) with C set to #0003.

b) The pulse output will stop when the target position is reached.

c) Switch the Motion Control Module to PROGRAM mode.

!Caution With PLS2(887), the output may continue for some time at the stopping fre-
quency, depending on factors such as the acceleration/deceleration rate and
the target speed. (Even when this happens, the correct number of pulses will
be output.)

T1 T2 T3

Pulse
frequency

Starting
frequency

Acceleration
rate

Number of pulses

Deceleration rate

Stopping
frequency

Output
stopped

Deceleration
point

Output
started

Time

Target frequency
reached
436

High-speed Counter/Pulse Output Instructions Section 3-19
If this problem occurs, correct the system by adjusting the acceleration rate,
deceleration rate, target speed, or starting frequency. If the starting frequency
is low, it is easy to adjust the system by increasing the starting frequency to
500 Hz or higher.

Note PLS2(887) cannot be used if the pulse output operation mode is set to Abso-
lute pulse (Circular mode) or 1 shot mode in the System Setup.

Flags

Example When CIO 0000.00 goes from OFF to ON, PLS2(887) starts a relative pulse
output of 100,000 pulses from pulse output 1. The pulse output begins at a
starting frequency of 200 Hz and accelerates to a target frequency of 50 kHz
at an acceleration rate of 500 Hz/2 ms. When the output reaches the deceler-
ation point, it decelerates back to the starting frequency of 200 Hz at a decel-
eration rate of 250 Hz/2 ms. The pulse output stops at 200 Hz.

Pulse
frequency

Starting
frequency

Specified number of pulses

Stopping
frequency

Output
stopped

Output
started

Time

Target
frequency Time increased until

pulse output stops.

Name Label Operation

Error Flag ER ON if P is set to a value other than #1 or #2.

ON if M is set to a value other than #0 or #1.
ON if the pulse output operation mode is set to Absolute
pulse (Circular mode) or Electronic cam control mode in
the System Setup.
ON if the target frequency, acceleration rate, or decelera-
tion rate setting is incorrect. (For example, if the target fre-
quency is less than the starting frequency.)
ON if the CW/CCW direction setting is incorrect for the
relationship between the present position and target posi-
tion.
ON if pulses are already being output from the specified
output port.

ON if an instruction controlling pulse output is being exe-
cuted in the main program, an interrupt occurs, and
PLS2(887) is executed in the interrupt task.

OFF in all other cases.
437

High-speed Counter/Pulse Output Instructions Section 3-19
3-19-7 ACCELERATION CONTROL: ACC(888)
Purpose ACC(888) outputs pulses to the specified output port at the specified fre-

quency using the specified acceleration and deceleration rate. (The accelera-
tion rate is the same as the deceleration rate.)

ACC(888) can perform positioning (independent mode) or speed control (con-
tinuous mode). For positioning, ACC(888) is used in combination with
PULS(886). ACC(888) can also be executed during pulse output to change
the target frequency or acceleration/deceleration rate, enabling smooth
(sloped) speed changes.

This instruction is supported by the FQM1-MMP21 and FQM1-MMA21 Motion
Control Modules only.

Ladder Symbol

Variations

Applicable Program Areas

@PLS2

#1

#0000

D00100

86A0

0001

C350

0000

00C8

0000

01F4

00FA

0000.00

D00100

D00101

D00102

D00103

D00104

D00105

D00106

D00107

100,000 pulses

Target frequency
50 kHz

Starting frequency
200 Hz

Pulse output 1

CX/CCW outputs, CW direction
Relative pulse specification

Pulse frequency

Time

PLS2(887)
executed

Number of output pulses:
100,000 pulses

Target frequency: 50 kHz

Starting frequency: 200 Hz

Acceleration rate: 500 Hz/2 ms

Deceleration rate: 250 Hz/2 ms

ACC(888)

P

M

S

P: Port specifier
M: Output mode
S: First word of settings table

Variations Executed Each Cycle for ON Condition ACC(888)

Executed Once for Upward Differentiation @ACC(888)

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
438

High-speed Counter/Pulse Output Instructions Section 3-19
Operands P: Port Specifier
The port specifier specifies the port where the pulses will be output.

M: Output Mode
The value of M determines the pulse output mode in the FQM1-MMP21.

S: First Word of Settings Table

• FQM1-MMP21 Settings

Note a) The target frequency can be set between 0 Hz and 1 MHz, but the
frequency that can actually be output depends on the clock fre-
quency. Refer to 7-6-4 Pulse Output Specifications in the FQM1
Series Flexible Motion Controller Operation Manual (Cat. No.
O010) to verify the allowed output range. An error will occur and
the instruction will not be executed if the specified frequency ex-
ceeds the allowed output range. If the specified frequency is below
the allowed output range, the lower limit frequency will be output.

b) The output frequencies are obtained by dividing the Motion Con-
trol Module’s clock pulse with an integer dividing ratio, meaning
the actual output frequency can be different from the set frequen-
cy.
Also, the pulse frequencies actually output during acceleration/de-
celeration are frequencies that can actually be output with the in-
teger dividing ratio. If the acceleration or deceleration rate is low,
there may not be an change in the frequency in every 2 ms inter-
val.
Refer to Precautions when Using Pulse Outputs in the FQM1 Se-

P Port

#1 FQM1-MMP21: Pulse output 1

FQM1-MMA21: Analog output 1

#2 FQM1-MMP21: Pulse output 2

FQM1-MMA21: Analog output 2

Module Value of M Mode

FQM1-MMP21
(Pulse output)

#0000 CW, acceleration, continuous mode

#0001 CCW, acceleration, continuous mode

#0002 CW, deceleration, continuous mode

#0003 CCW, deceleration, continuous mode

#0004 CW, acceleration, independent mode

#0005 CCW, acceleration, independent mode

#0006 CW, deceleration, independent mode

#0007 CCW, deceleration, independent mode

FQM1-MMA21 #0000 (fixed) ---

Word Content

S Specifies the acceleration and deceleration rates

• 2 ms cycle (speed-change cycle)
Set a frequency change of 0001 to 270F hex (1 to 9,999 Hz, in 1-Hz
units). The frequency is changed by this amount every 2 ms.

• 1 ms cycle (speed-change cycle)
Set a frequency change of 0001 to 270F hex (1 to 9,999 Hz, in 1-Hz
units). The frequency is changed by this amount every 1 ms.

S+1,
S+2

Specifies the target frequency in 8-digit hexadecimal. (S+1 contains the
rightmost 4 digits and S+2 contains the leftmost 4 digits.)
Set a frequency of 0000 0000 to 000F 4240 hex (0 Hz to 1 MHz in 1-Hz
units). This is the target frequency after acceleration.
439

High-speed Counter/Pulse Output Instructions Section 3-19
ries Flexible Motion Controller Operation Manual (Cat. No. O010)
for details.

• FQM1-MMA21 Settings

Note An error will occur and the ER Flag will be turned ON if the settings
exceed the ranges listed above.

Operand Specifications

Word Content

S Specifies the analog output’s rate-of-change in 4-digit hexadecimal.
The analog output value will be changed by this amount every 2 ms.
–10 to 10 V

0000 to 2AF8 hex (0 to 11,000 decimal) = 0 to 110% (0 to +22 V)
0 to 10 V, 0 to 5 V, or 1 to 5 V

0000 to 1130 hex (0 to 4,400 decimal) =
0 to 110% (0 to +11 V, 0 to +5.5 V, or 0 to +4.4 V)

S+1 Specifies the target analog output value in 4-digit hexadecimal.

–10 to 10 V
EC78 to 1388 hex (–5,000 to 5,000 decimal) (resolution: 10,000)
corresponding to 0% to 100% voltage (–10 to 10 V)
(Actually, the setting range is EA84 to 157C (–5,500 to 5,500 dec-
imal) corresponding to –5% to 105% voltage (–11 to 11 V).)

0 to 10 V, 0 to 5 V, or 1 to 5 V:
0000 to 0FA0 hex (0000 to 4,000 decimal) (resolution: 4,000) cor-
responding to 0% to 100% of the FS range.
(Actually, the setting range is FF38 to 1068 (–200 to 4,200 deci-
mal) corresponding to –5% to 105% voltage (–0.5 to 10.5 V, –0.25
to 5.25 V, or 0.8 to 5.2 V).)

Area P M S

CIO Area --- --- CIO 0000 to CIO 0253

Work Area --- --- W000 to W253

Auxiliary Bit Area --- --- A448 to A647

Timer Area --- --- T0000 to T0253

Counter Area --- --- C0000 to C0253

DM Area --- --- D00000 to D32765

Indirect DM addresses
in binary

--- --- @ D00000 to @
D32767

Indirect DM addresses
in BCD

--- --- *D00000 to *D32767

Constants See operand
description.

See operand
description.

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or
–2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
440

High-speed Counter/Pulse Output Instructions Section 3-19
Description Pulse Output (FQM1-MMP21)

Pulses can be output in independent mode (positioning) or continuous mode
(speed control).

• Independent Mode (Positioning) Operation

In independent mode, only a preset number of pulses are output. Set the
number of output pulses in advance with PULS(886).

Mode Description Frequency changes

Speed
control

Mode #0000 or #0001 (Acceleration + Continuous
mode)

The frequency is increased from the present fre-
quency to the target frequency at the specified
acceleration/deceleration rate. The pulse output
continues at the target frequency. The output will
continue until stopped with INI(880) or by execut-
ing SPED(885) or ACC(888) with a target fre-
quency of 0.

Mode #0002 or #0003 (Deceleration + Continuous
mode)
The frequency is decreased from the present fre-
quency to the target frequency at the specified
acceleration/deceleration rate. The pulse output
continues at the target frequency. The output will
continue until stopped with INI(880) or by execut-
ing SPED(885) or ACC(888) with a target fre-
quency of 0.

Position-
ing

Mode #0004 or #0005 (Acceleration + Indepen-
dent mode)
The frequency is increased to the target frequency
at the specified acceleration/deceleration rate.
The pulse output continues at the target frequency
until the number of pulses specified with
PULS(886) have been output. The pulse output
stops automatically at that point.
(With independent mode, the number of pulses
must be set in advance with PULS(886) and the
output operates according to that setting.)

Mode #0006 or #0007 (Deceleration + Indepen-
dent mode)

The frequency is decreased from the present fre-
quency to the target frequency at the specified
acceleration/deceleration rate. The pulse output
continues at the target frequency until the number
of pulses specified with PULS(886) have been
output. The pulse output stops automatically at
that point.
(With independent mode, the number of pulses
must be set in advance with PULS(886) and the
output operates according to that setting.)

Time

ACC(888)
executed

Accel/Decel
Rate
(T)

Pulse
frequency

Target
frequency
(T+1, T+2)

Present
frequency

Pulse output will continue until
stopped with INI(880) or by
executing SPED(885) or ACC(888)
with a target frequency of 0

Time

ACC(888)
executed

Accel/Decel
Rate (T)

Pulse
frequency

Target
frequency
(T+1, T+2)

Present
frequency

Pulse output will continue until
stopped with INI(880) or by
executing SPED(885) or ACC(888)
with a target frequency of 0

Time

ACC(888)
executed

Accel/Decel
Rate
(T)

Pulse
frequency

Target
frequency
(T+1, T+2) Number of

pulses specified
with PULS(886)

Pulse output stops when
the specified number of
pulses have been output.

Time

ACC(888)
executed

Accel/Decel
Rate (T)

Pulse
frequency

Target
frequency
(T+1, T+2)

Number of
pulses specified
with PULS(886)

Pulse output stops when
the specified number of
pulses have been output.

Present
frequency

SPED(885)
or other
instruction
executed
441

High-speed Counter/Pulse Output Instructions Section 3-19
In independent mode (positioning), the number of output pulses must be
specified in advance with PULS(886). (No pulses will be output if the num-
ber of output pulses is not specified before executing ACC(888).) If the
pulse output has been stopped, it is necessary to set the number of output
pulses again with PULS(886).

If the number of output pulses set with PULS(886) is less than the number
of pulses required for acceleration (Pulses ≈ Time to reach target frequen-
cy × (Target frequency − Starting frequency) ÷ 2), the pulse output will stop
before the target frequency is reached.

Likewise, if the number of output pulses set with PULS(886) is less than
the number of pulses required for deceleration (Pulses ≈ Time to reach tar-
get frequency × (Target frequency − Starting frequency) ÷ 2), the pulse out-
put will stop before the target frequency is reached.

If the target frequency is set to 0 and the number of output pulses set with
PULS(886) is greater than the number of pulses required for deceleration
(Pulses ≈ Time to reach target frequency × (Target frequency − Starting
frequency) ÷ 2), the pulse output will stop before the specified number of
pulses have been output.

If a high acceleration/deceleration rate and low number of output pulses
are set, the effective operation will have almost no acceleration/decelera-
tion and the system will operate at nearly a steady speed.

• Continuous Mode (Speed Control) Operation
In continuous mode, pulses are output continuously until stopped by exe-
cuting SPED(885) or ACC(888) with a target frequency of 0, executing
INI(880) with C = #0003, or switching the Motion Control Module to PRO-
GRAM mode.

Analog Output (FQM1-MMA21)

1. To generate an analog output, execute ACC(888) with P set to #0001 or
#0002, M set to #0000, and S set to the first of two words containing the
analog output rate-of-change (slope) and target output value. ACC(888)
needs to be executed just once, so use either the up-differentiated varia-
tion of the instruction (@ACC(888)) or an execution condition that is ON for
just one cycle.

2. When ACC(888) is executed, the analog output is increased every 2 ms by
the rate-of-change amount specified in S. When the target analog output
value is reached, the value will stop increasing and remain at the target val-
ue.

3. Analog outputs can be output independently and simultaneously from two
output ports.

4. Analog outputs are not distinguished as continuous or independent out-
puts. The analog output generated by ACC(888) will maintain its output
value until one of the following events occurs:

a) SPED(885) or ACC(888) is executed with a different target value.

b) The Output stop function is set to a setting other than Hold and the Mo-
tion Control Module is switched to PROGRAM mode or the Analog
Output Conversion Enable Bit (A564.00 or A565.00) is reset to 0.

5. If an analog output is being generated by SPED(885), that output value can
be changed by executing ACC(888) with a different analog output value.

6. The present analog output value will not be changed and an error will occur
if ACC(888) is executed while another ACC(888) is generating an acceler-
ating or decelerating analog output (i.e., the earlier ACC(888) analog out-
put has not reached its target value).
442

High-speed Counter/Pulse Output Instructions Section 3-19
7. In order to generate analog outputs with ACC(888), the output method
must be set to Immediate refresh in the System Setup’s Analog Input/
Output Tab. If the output method is set to End refresh, an error will occur
and an analog output will not be generated by ACC(888).

Flags

Example When CIO 0000.00 goes from OFF to ON, ACC(888) starts pulse output from
pulse output 1 in continuous mode in the clockwise direction using the CW/
CCW method. Pulse output is accelerated at a rate of 20 Hz every 2 ms until
the target frequency of 500 Hz is reached. When CIO 0000.01 goes from OFF
to ON, ACC(888) changes to an acceleration rate of 10 Hz every 2 ms until
the target frequency of 1,000 Hz is reached.

Name Label Operation

Error Flag ER ON if P is set to a value other than #0001 or #0002.

For the FQM1-MMP21, ON if M is not set between #0 and
#7.
For the FQM1-MMA21, ON if M is not set to #0.

For the FQM1-MMP21, ON if the specified frequency is
not supported at the selected Motion Control Module
clock frequency.

For the FQM1-MMP21, ON if ACC(888) is executed
when the present pulse output cannot be changed.
(For example, the pulse output cannot be changed when
pulses are already being output by an ACC(888) instruc-
tion but the target value has not been reached.)
For the FQM1-MMA21, ON if ACC(888) is executed
when the present analog output cannot be changed.
(For example, the analog output value cannot be changed
when an ACC(888) instruction is already outputting an
analog output but the target value has not been reached.)
ON if an instruction controlling a pulse output or analog
output is being executed in the main program, an interrupt
occurs, and ACC(888) is executed in the interrupt task.
OFF in all other cases.

0014

01F4

0000

D00100

D00101

D00102

000A

03E8

0000

D00105

D00106

D00107

@ACC

#1

#0

D00100

0000.00

@ACC

#1

#0

D00105

0000.01

500 Hz

10 Hz/2 ms

20 Hz/2 ms

1,000 Hz

Pulse output 1

CW/CCW output, CW,
Continuous mode

Pulse output 1

CW/CCW output, CW,
Continuous mode

Target frequency: 500 Hz

Accleration/deceleration rate: 20 Hz

Target frequency: 1,000 Hz

Accleration/deceleration rate: 10 Hz

Time

Target frequency

Pulse frequency

ACC(888) executed. ACC(888) executed.
443

Step Instructions Section 3-20
3-20 Step Instructions
This section describes Step Instructions, which are used to set up break
points between sections in a large program so that the sections can be exe-
cuted as units and reset upon completion.

In the FQM1, STEP(008)/SNXT(009) can be used together to create step pro-
grams.

Instruction Mnemonic Function code Page

STEP DEFINE STEP 008 445

STEP START SNXT 009 445

Instruction Operation Diagram

SNXT(009): STEP START Controls progression to the
next step of the program.

Corresponds

STEP(008): STEP DEFINE Indicates the start of a
step. Repeats the same
step program until the con-
ditions for progression to
the next step are estab-
lished.

Corresponds

Equivalent
to this

Processing

Equivalent
to this
444

Step Instructions Section 3-20
Note Work bits are used as the control bits for A, B, C and D.

3-20-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009)
Purpose SNXT(009) is placed immediately before the STEP(008) instruction and con-

trols step execution by turning the specified control bit ON. If there is another
step immediately before SNXT(009), it also turns OFF the control bit of that
process.

STEP(008) is placed immediately after the SNXT(009) instruction and before
each process. It defines the start of each process and specifies the control bit
for it. It is also placed at the end of the step programming area after the last
SNXT(009) to indicate the end of the step programming area. When it
appears at the end of the step programming area, STEP(008) does not take a
control bit.

Ladder Symbols

Process A

Process B

Process C

End

Corresponds

Process A

Process B

Process C

a turns ON

Starts the step programming area

Proceeds to the next step

Process A repeated until b turns ON.

b turns ON

Process B repeated until c turns ON.

c turns ON

Process C repeated until d turns ON.

Proceeds to the end of the ladder
step programming area

d turns ON

Step programming area completed

SNXT(009)

B B: Bit
445

Step Instructions Section 3-20
When defining the beginning of a step, a control bit is specified as follows:.

When defining the end of a step, a control bit is not specified as follows:

Variations

Applicable Program Areas

Operand Specifications

Description SNXT(009)
SNXT(009) is used in the following three ways:

1,2,3... 1. To start step programming execution.

2. To proceed to the next step control bit.

3. To end step programming execution.

The step programming area is from the first STEP(008) instruction (which
always takes a control bit) to the last STEP(008) instruction (which never
takes a control bit).

Starting Step Execution

SNXT(009) is placed at the beginning of the step programming area to start
step execution. It turns ON the control bit specified for B for the next
STEP(008) and proceeds to step B (all instructions after STEP(008) B). A up-

STEP(008)

B B: Bit

STEP(008)

Variations Executed Each Cycle for ON Condition STEP(008)/
SNXT(009)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

Not allowed OK Not allowed Not allowed

Area B

CIO Area ---

Work Area W000.00 to W255.15

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
446

Step Instructions Section 3-20
differentiated execution condition must be used for the SNXT(009) instruction
that starts step programming area execution, or step execution will last for
only one cycle. (If SNXT(009) is incorrectly placed at the beginning of the step
programming area, it will operate in the same manner as SET (i.e., once it is
turned ON, it will maintain its status until it is turned OFF by RESET.) If
SNXT(009) is already ON when starting the next cycle, the step programming
area will not be executed in the following cycles.)

Proceeding to the Next Step

When SNXT(009) occurs in the middle of the step programming area, it is
used to proceed to the next step. It turns OFF the previous control bit and
turns ON the next control bit B, for the next step, thereby starting step B (all
instructions after STEP(008) B).

Ending the Step Programming Area

When SNXT(009) is placed at the very end of the step programming area, it
ends step execution and turns OFF the previous control bit. The control bit
specified for B is a dummy bit. This bit will however be turned ON, so be sure
to select a bit that will not cause problems.

STEP(008)

STEP(008) functions in following 2 ways, depending on its position and
whether or not a control bit has been specified.

1,2,3... 1. Starts a specific step.

2. Ends the step programming area (i.e., step execution).

Starting a Step

STEP(008) is placed at the beginning of each step with an operand, B, that
serves as the control bit for the step.

The control bit B will be turned ON by SNXT(009) and the instruction in the
step will be executed from the one immediately following STEP(008). A200.12
(Step Flag) will also turn ON when execution of a step begins.

After the first cycle, step execution will continue until the conditions for chang-
ing the step are established, i.e., until the SNXT(009) instruction turns ON the
control bit in the next STEP(008).

When SNXT (009) turns ON the control bit for a step, the control bit B of the
current instruction will be reset (turned OFF) and the step controlled by bit B
will become interlocked.

Handling of outputs and instructions in a step will change according to the
ON/OFF status of the control bit B. (The status of the control bit is controlled
by SNXT(009)). When control bit B is turned OFF, the instructions in the step
are reset and are interlocked. Refer to the following tables.

Control bit status Handling

ON Instructions in the step are executed normally.

ON→OFF Bits and instructions in the step are interlocked
as shown in the next table.

OFF All instructions in the step are processed as
NOPs.
447

Step Instructions Section 3-20
Interlock Status (IL)

Note Indicates all other instructions, such as SET, REST, CNT, CNTR(012),
SFT(010), and KEEP(011).

The STEP(008) instruction must be placed at the beginning of each step.
STEP(008) is placed at the beginning of a step area to define the start of the
step.

Ending the Step Programming Area

STEP(008) is placed at the end of the step programming area without an
operand to define the end of step programming When the control bit preced-
ing a SNXT(009) instruction is turned OFF, step execute is stopped by
SNXT(009).

Flags:STEP(008)

Flags:SNXT(009)

Precautions The control bit, B, must be in the Work Area for STEP(008)/SNXT(009).

A control bit for STEP(008)/SNXT(009) cannot be use anywhere else in the
ladder diagram. If the same bit is used twice, a duplication bit error will occur.

If SBS(091) is used to call a subroutine from within a step, the subroutine out-
puts and instructions will not be interlocked when the control bit turns OFF.

Control bits within one section of step programming must be sequential and
from the same word.

SNXT(009) will be executed only once, i.e., on the rising edge of the execution
condition.

Input SNXT(009) at the end of the step programming area and make sure that
the control bit is a dummy bit in the Work Area. If a control bit for a step is
used in the last SNXT(009) in the step programming area, the corresponding
step will be started when SNXT(009) is executed.

An error will occur and the Error Flag will turn ON if the operand B specified
for SNXT(009) or STEP(008) is not in the Work Area or if the step program
has been placed anywhere but in a cyclic task.

A200.12 (Step Flag) is turned ON for one cycle when STEP(008) is executed.
This flag can be used to conduct initialization once the step execution has
started.

Instruction output Status

Bits specified for OUT, OUT NOT All OFF

The following timer instruc-
tions: TIM, TIMH(015), and
TMHH(540)

PV 0000 hex (reset)

Completion Flag OFF (reset)

Bits or words specified for other instructions (see note) Holds the previous status
(but the instructions are
not executed)

Name Label Operation

Error Flag ER ON when the specified bit B is not in the WR area.
ON when STEP(008) is used in an interrupt program.
OFF in all other cases.

Name Label Operation

Error Flag ER ON when the specified bit B is not in the WR area.
ON when SNXT(009) is used in an interrupt program.

OFF in all other cases.
448

Step Instructions Section 3-20
Placement Conditions for Step Programming Areas (STEP B to STEP)

STEP(008) and SNXT(009) cannot be used inside of subroutines, interrupt
tasks, or block programs.

Be sure that two steps are not executed during the same cycle.

Instructions that Cannot be Used Within Step Programs

The instructions that cannot be used within step programs are listed in the fol-
lowing table.

Related Bits

Function Mnemonic Name

Sequence Control Instruc-
tions

END(001) END

IL(002) INTERLOCK

ILC(003) INTERLOCK CLEAR

JMP(004) JUMP

JME(005) JUMP END

Subroutine Instructions SBN(092) SUBROUTINE ENTRY

RET(093) SUBROUTINE RETURN

Name Address Details

Step Flag A200.12 ON for one cycle when a step program is started
using STEP(008). Can be used to reset timers
and perform other processing when starting a
new step.

0000.00

0000.01

A200.12

W000.00

W000.00

W000.00

A200.12

1 cycle

Start
449

Step Instructions Section 3-20
Step a starts when C turns ON

A executed

When d turns ON, b starts (A is interlocked)

B executed

e turns ON (B is interlocked)

End of step programming area

Normal ladder
program Returns to normal ladder program

(dummy bit)
450

Step Instructions Section 3-20
Examples Sequential Control

0000.00

0000.01

W000.00

W000.00

W000.01

W000.01

0000.02

W100.00

Step (A) ladder program

Step (B) ladder program

Normal ladder program

CIO 0000.00 turns ON, step W000.00 starts

Step W000.00 starts from the next instruction

Step W000.00

W000.00 turns OFF, W000.01 turns ON and step W000.01 starts

Step W000.01 starts from the next instruction

W000.01 turns OFF and dummy bit W100.00 turns ON

End of step programming area

Step W000.01

W000.00

W000.01

W000.02

Step (A)

Step (B)

Step (C)

End

0000.01 (Step (A) starting condition)

0000.02 (Step (A) → Step (B) transition condition)

0000.03 (Step (B) → Step (C) transition condition)

0000.04 (Step (C) reset conditions)
451

Step Instructions Section 3-20
Branching Control

0000.01

0000.02

W000.00

W000.00

W000.01

W000.01

0000.03

W000.02

W000.02

0000.04

W100.00

Step W000.00 (A)

Step W000.01 (B)

Step W000.02 (C)
Step (C) ladder program

Step (B) ladder program

Step (A) ladder program

W000.00 W000.01

W000.02

Step (A) Step (B)

Step (C)

End

0000.05 (Step (C) reset conditions)

0000.01 (Step (A)
starting condition)

0000.02 (Step (B) starting condition)

0000.03 (Step (A) →
Step (C) transition
condition)

0000.04 (Step (B) → Step (C) transition condition)
452

Step Instructions Section 3-20
The above programming is used when steps A and B cannot be executed
simultaneously. For simultaneous execution of A and B, delete the execution
conditions illustrated below.

Note In the above example, where SNXT(009) is executed for W000.02, the
branching moves onto the next steps even though the same control bit is used
twice. This is not picked up as an error in the program check using the CX-
Programmer. A duplicate bit error will only occur in a step ladder program only
when a control bit in a step instructions is also used in the normal ladder dia-
gram.

0000.01 0000.02

0000.02 0000.01

W000.00

W000.01

W000.00

0000.03

W000.02

W000.01

0000.04

W000.02

W000.02

0000.05

W100.00

↑

↑

Step (A) ladder program

Step (B) ladder program

Step (C) ladder program

Step W000.00
(A)

Step W000.01
(B)

Step W000.02
(C)

0000.02 0000.01
453

Step Instructions Section 3-20
Parallel Control

W000.00

W000.01

W000.02

W000.03

W000.04

Step (A)

Step (B)

Step (C)

End

0000.05 (Step (E) reset conditions)

Step (D)

Step (E)

0000.04 (When both Step (B) and Step (D)
are complete, moves to Step (E)

0000.03 (Step (C) → Step (D)
transition condition)

0000.01 (Step (A), (C) simultaneous starting condition)

0000.02 (Step (A) →
Step (B) transition
condition)
454

Step Instructions Section 3-20
0000.01

W000.00

W000.02

W000.00

0000.02

W000.01

W000.01

0200.03 0000.04

W000.04

W000.02

0000.03

W000.03

W000.03

W000.04

0000.05

W100.00

0200.03

Step (A) ladder program
Step W000.00 (A)

Step W000.01
(B)Step (B) ladder program

Step W000.02 (C)
Step (C) ladder program

Step W000.03
(D)

Step (D) ladder program

Step W000.04
(E)

Step (E) ladder program
455

Step Instructions Section 3-20
Application Examples The following three examples demonstrate the three types of execution con-
trol possible with step programming. Example 1 demonstrates sequential exe-
cution; Example 2, branching execution; and Example 3, parallel execution.

Example 1:
Sequential Execution

The following process requires that three processes, loading, part installation,
and inspection/discharge, be executed in sequence with each process being
reset before continuing on the next process. Various sensors (SW1, SW2,
SW3, and SW4) are positioned to signal when processes are to start and end.

The following diagram demonstrates the flow of processing and the switches
that are used for execution control.

The program for this process, shown below, utilizes the most basic type of
step programming: each step is completed by a unique SNXT(009) that starts
the next step. Each step starts when the switch that indicates the previous
step has been completed turns ON.

SW 1

SW 2
SW 3

SW 4

Solenoid 1 Robot hand

Solenoid 2

Conveyor belt 1

Loading

Conveyor belt 2

Part installation

Conveyor belt 3

Inspection/discharge

Photomicro-
sensor

SW1

SW2

SW3

SW4

Process A

Process B

Process C

Loading

End

Part Installation

Inspection/discharge
456

Step Instructions Section 3-20
Example 2:
Branching Execution

The following process requires that a product is processed in one of two ways,
depending on its weight, before it is printed. The printing process is the same
regardless of which of the first processes is used. Various sensors are posi-
tioned to signal when processes are to start and end.

 000000 @LD 0000.01

 000001 SNXT(009) W000.00
 000002 STEP(008) W000.00

 000100 LD 0000.02

 000101 SNXT(009) W000.01

 000102 STEP(008) W000.01

 000200 LD 0000.03
 000201 SNXT(009) W000.02
 000202 STEP(008) W000.02

 000300 LD 0000.04

 000301 SNXT(009) W100.00

 000302 STEP(008) ---

0000.01 (SW1)

W000.00

W000.00

0000.02 (SW2)

W000.01

W000.01

0000.03 (SW3)

W000.02

W000.02

0000.04 (SW4)

W100.00

 Process A

 Process B

 Process C

Address Instruction OperandsProcess
A started.

Process
A reset.
Process
B started.

Process
B reset.
Process
C started.

Process
C reset.

Programming for process A

Programming for process B

Programming for process C

SW A1 SW A2

SW C1

SW C2

SW D

SW B2SW B1

Process C

Process B

Process A

Guide

Weight scale

Conveyer B

Conveyer A

Printer
457

Step Instructions Section 3-20
The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, either process A or process B is
used depending on the weight of the product.

SW A1 SW B1

SW A2 SW B2

SW D

Process A

Process C

End

Process B
458

Step Instructions Section 3-20
The program for this process, shown below, starts with two SNXT(009)
instructions that start processes A and B. Because of the way CIO 0000.01
(SW A1) and CIO 0000.02 (SW B1) are programmed, only one of these will
be executed with an ON execution condition to start either process A or pro-
cess B. Both of the steps for these processes end with a SNXT(009) that
starts the step (process C).

 000301 SNXT(009) W100.00

 000000 @LD 0000.01
 000001 AND NOT 0000.02
 000002 SNXT(009) W000.00
 000003 LD NOT 0000.01
 000004 @AND 0000.02
 000005 SNXT(009) W000.01
 000006 STEP(008) W000.00

 000100 LD 0000.03
 000101 SNXT(009) W000.02
 000102 STEP(008) W000.01

 000200 LD 0000.04
 000201 SNXT(009) W000.02
 000202 STEP(008) W000.02

 000300 LD 0000.05

 000302 STEP(008) ---

0000.01 0000.02

0000.01 0000.02
W000.00

W000.01

W000.00

0000.03 (SW A2)

W000.02

W000.01

0000.04 (SW B2)

W000.02

W000.02

0000.05 (SW D)

W100.00

 Process A

 Process B

 Process C

Instruction OperandsAddress

Note In the above programming, W000.02 is used in two
SNXT(009) instructions. This will not produce a duplication
error during the program check.

Process
C reset.

Process B
reset.
Process C
started.

Process
A reset.
Process
C started.

Process
A or B
selected
and
started.

Programming for process C

Programming for process B

Programming for process A
459

Step Instructions Section 3-20
Example 3:
Parallel Execution

The following process requires that two parts of a product pass simulta-
neously through two processes each before they are joined together in a fifth
process. Various sensors are positioned to signal when processes are to start
and end.

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, process A and process C are started
together. When process A finishes, process B starts; when process C fin-
ishes, process D starts. When both processes B and D have finished, process
E starts.

The program for this operation, shown below, starts with two SNXT(009)
instructions that start processes A and C. These instructions branch from the
same instruction line and are always executed together, starting steps for both
A and C. When the steps for both A and C have finished, the steps for process
B and D begin immediately.

When both process B and process D have finished (i.e., when SW5 and SW6
turn ON), processes B and D are reset together by the SNXT(009) at the end
of the programming for process B. Although there is no SNXT(009) at the end
of process D, the control bit for it is turned OFF by executing SNXT(009)
W000.04. This is because the OUT for bit W000.03 is in the step reset by
SNXT(009) W000.04, i.e., W000.03 is turned OFF when SNXT(009) W000.04
is executed. Process B is thus reset directly and process D is reset indirectly
before executing the step for process E.

SW1

SW2

SW3

SW4 SW6

SW5 SW7

Process C

Process A

Process D

Process B

Process E

Conveyer A

Conveyer C Conveyer D

Conveyer B

Conveyer E

SW7

SW3 SW4

Process A

Process E

End

Process C

Process B Process D

SW5 and SW6 both ON

SW 1 and SW2 both ON
460

Step Instructions Section 3-20
 000200 LD W000.03

 000201 OUT W000.03

 000202 AND 0000.04

 000203 SNXT(009) W000.04

 000204 STEP(008) W000.02

 000300 LD 0000.03
 000301 SNXT(009) W000.03
 000302 STEP(008) W000.03

 000400 STEP(008) W000.04

 000500 LD 0000.05

 000501 SNXT(009) W100.00

 000502 STEP(008) ---

W000.03

W000.03

W000.03

 000000 @LD 0000.01

 000001 SNXT(009) W000.00

 000002 SNXT(009) W000.02

 000003 STEP(008) W000.00

 000100 LD 0000.02
 000101 SNXT(009) W000.01
 000102 STEP(008) W000.01

0000.01 (SW1, SW2)

W000.00

W000.02

W000.00

0000.02 (SW3)

W000.01

W000.01

0000.04 (SW5, SW6)

W000.04

W000.02

0000.03 (SW4)

W000.03

W000.04

0000.05 (SW7)

W100.00

 Process A

 Process B

 Process C

 Process D

 Process E

Instruction OperandsProcess A
started.

Process C
started.

Address

Programming for process A

Process A
reset.
Process B
started.

Used to
turn off
process D.

Process E
started.

Programming for process C

Process C
reset.

Process D
started.

Programming for process D

Programming for process E

Process E
reset.

Programming for process B
461

I/O Refresh Instruction Section 3-21
3-21 I/O Refresh Instruction
This section describes the instruction used to refresh I/O.

3-21-1 I/O REFRESH: IORF(097)
Purpose Refreshes the specified I/O words.

Ladder Symbol

Variations

Applicable Program Areas

Operands St: Starting Word
CIO 0000 to CIO 0001

E: End Word
CIO 0000 to CIO 0001

Note St and E must be in the same memory area.

Operand Specifications

Description IORF(097) refreshes the I/O words between St and E.

IORF(097) can be used in interrupt tasks to enable high-speed processing of
the specified I/O words.

Instruction Mnemonic Function code Page

I/O REFRESH IORF 097 462

IORF(097)

St

E

St: Starting word

E: End word

Variations Executed Each Cycle for ON Condition IORF(097)

Executed Once for Upward Differentiation @IORF(097)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area St E

CIO Area CIO 0000 to CIO 0001

Auxiliary Area ---

Special Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses in
binary

Indirect DM addresses in
BCD

Constants ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
462

Serial Communications Instructions Section 3-22
Flags

Examples The following example shows how to refresh the two words CIO 0000 and
CIO 0001 when CIO 0000.00 turns ON.

3-22 Serial Communications Instructions
This section describes instructions used for serial communications.

3-22-1 Serial Communications
The TXD(236) and RXD(235) instructions send and receive data in no-proto-
col (custom) communications with an external device through a serial port on
the Coordinator Module.

Name Label Operation

Error Flag ER ON if St is greater than E.
ON if St and E are in different memory areas.

OFF in all other cases.

St: 0000
E: 0001

IORF
St 0000
E 0001

0000.00

I/O refreshing

Instruction Mnemonic Function code Page

TRANSMIT TXD 236 464

RECEIVE RXD 235 469

CHANGE SERIAL PORT SETUP STUP 237 474

Instructions Communications frames Function

TXD(236)
and
RXD(235)

Sends or receives data in one direction only.
A send delay can be set.

Data Data

Data Data

Only End Code
Data Data

Any of the following can be used.
No Start or End Code Start and End Code

Only Start Code CR+LF End Code

Start and CR+LF End Code
463

Serial Communications Instructions Section 3-22
3-22-2 TRANSMIT: TXD(236)
Purpose Outputs the specified number of bytes of data from the RS-232C port or RS-

422A port on the Coordinator Module.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the control word, C, is as shown below.

Operand Specifications

Instructions Mode Communications ports

TXD(236)
and
RXD(235)

No-protocol
(custom)

TXD(236)/
RXD(235)

RXD(235)

TXD(236)

Serial port in Coordinator Module
Coordinator Module

TXD(236)

S

C

N

S: First source word

C: Control word

N: Number of bytes
 0000 to 0100 hex (0 to 256)

Variations Executed Each Cycle for ON Condition TXD(236)

Executed Once for Upward Differentiation @TXD(236)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

15 8 011 37 412

C

Port specifier
00 hex: RS-232C
80 hex: RS-422A

Byte order
0: Most significant bytes first
1: Least significant bytes first

RS and ER signal control (RS-232C port only)
0: No RS and ER signal control
1: RS signal control
2: ER signal control
3: RS and ER signal control

Area S C N

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A000 to A649
464

Serial Communications Instructions Section 3-22
Description TXD(236) reads N bytes of data from words beginning with S and outputs the
raw data in no-protocol mode from the RS-232C port or RS-422A port. (The
output port is specified with bits 8 to 15 of C.)

The start and end codes specified for no-protocol mode are added to the data
before the data is output. The start and end codes are specified in the System
Setup.

Data can be sent only when the port’s Send Ready Flag is ON. The Send
Ready Flag is A410.09 for the RS-232C port and A414.09 for the RS-422A
port.

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants --- Specified values
only

#0000 to #0100
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area S C N
465

Serial Communications Instructions Section 3-22
The following diagram shows the order in which data is sent and the contents
of the send frame for various start and end code settings.

Flags

Precautions TXD(236) can be used only for the Coordinator Modules’s RS-232C port or
RS-422A port. In addition, the port must be set to no-protocol mode in the
System Setup.

The following send-message frame format can be set in the System Setup.

• Start code: None or 00 to FF hex.

• End code: None, CR+LF, or 00 to FF hex.

The data will be sent with any start and/or end codes specified in the System
Setup. If start and end codes are specified, the codes will be added to the
send data (N). Even in this case, the maximum number of bytes that can be
specified for N is 256 bytes.

Data can be sent only when the port’s Send Ready Flag (A410.09/A414.09) is
ON.

Data is sent in the order specified in C.

1

3

5

2

4

6

CR LF

CR+LF End Code

Only End Code

Data

Data

Data

Data

Data

Data

N bytes of data is sent in the following order when
sending the most significant bytes first is specified:
1, 2, 3, 4, 5, 6

No Start or End Code

N send bytes: 256 max.

Only Start Code

Send bytes after ST:
256 max.

Send bytes before ED:
256 max.

Start and End Code

Send bytes between
ST and ED: 256 max.

Send bytes before
CR+LF: 256 max.

Send bytes between ST
and CR+LF: 256 max.

Start and CR+LF End Code

RS-232C/RS-422A port on Coordinator Module

Data sent.

Name Label Operation

Error Flag ER ON if the no-protocol mode is not set in the System Setup.

ON if the value of C is not within range.
ON if the value for N is not between 0000 and 0100 hex.
ON if a send is attempted when the Send Ready Flag
(A410.09/A414.09) is OFF.
OFF in all other cases.
466

Serial Communications Instructions Section 3-22
Nothing will be sent if 0 is specified for N.

If RS signal control is specified in C, bit 15 of S will be used as the RS signal.

If ER signal control is specified in C, bit 15 of S will be used as the ER signal.

If RS and ER signal control is specified in C, bit 15 of S will be used as the RS
signal and bit 14 of S will be used as the ER signal.

If 1, 2, or 3 hex is specified for RS and ER signal control in C, TXD(236) will be
executed regardless of the status of the Send Ready Flag (A410.09/A414.09).

An error will occur and the Error Flag will turn ON in the following cases.

• If no-protocol mode is not set for the port in the System Setup

• If the value of C is not within range

• If the value for N is not between 0000 and 0100 hex

• If a send is attempted when the Send Ready Flag (A410.09/A414.09) is
OFF.

Note The timing of sending data can be coordinated with the receiving device by
setting a send delay.

Related Flags and Words The following System Setup settings and Auxiliary Area flag can be used as
required when executing TXD(236).

System Setup Settings

Auxiliary Area

Send Ready Flags

Name Description Settings

No-protocol
Mode Start Code

Specifies whether to use a start code
in the frame format for no-protocol
communications.

0: None (default)
1: Use start code

(00 to FF hex)

No-protocol
Mode End Code

Specifies whether to use an end
code in the frame format for no-proto-
col communications.

0: None (default)
1: Use end code

(00 to FF hex or CF+LF)

No-protocol
Mode Send
Delay

Specifies whether to delay sending
data after execution of the instruction
until sending the data from the port.

0 to 99,990 ms decimal
(in 10-ms units)

Default: 0 ms

Name Address Contents

RS-232C Port Send Ready Flag A410.09 ON when data can be sent in
the no-protocol mode.RS-422A Port Send Ready Flag A414.09
467

Serial Communications Instructions Section 3-22
Example: Sending Data When CIO 0000.00 and the RS-232C port Send Ready Flag (A410.09) are
ON in the following example, 5 bytes of data are sent from the RS-232C port
on the Coordinator Module.

S:

ST 12 34 AB CD EF ED

0

0 1C: D00200

812 3415 0711

Byte order
1: Least significant byte to most significant byte

RS and ER signal control
0: No RS and ER signal control

00

TXD

D00100

D00200

&5

0000.00

S

C

N

00 hex: RS-232C port

Sent

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Start and end codes added according to set-
ting in System Setup (this example assumes
that both a start and end code have been set).

5 bytes

Sent in speci-
fied order.

Most signifi-
cant bytes

Least signif-
icant bytes
468

Serial Communications Instructions Section 3-22
Example: Performing
Signal Control

When CIO 0000.01 and the RS-232C port Send Ready Flag (A410.09) are
ON in the following example, the RS signal is set according to the status of
D00300 bit 15 and the ER signal is set according to the status of D00300 bit
14.

3-22-3 RECEIVE: RXD(235)
Purpose Reads the specified number of bytes of data from the RS-232C port or RS-

422A port on the Coordinator Module.

Ladder Symbol

Variations

Applicable Program Areas

C: D00400

S: D00300

3 0

1 0 0 0

15 14 13 12

0 0

RS and ER signal control
3: RS and ER signal control.

ER signal set to 0

RS signal set to 1

TXD

D00300

D00400

&0

S

C

N

0000.01

Byte order
0: Most significant byte to least significant byte

Port specifier
00 hex: RS-232C port

RXD(235)

D

C

N

D: First destination word

C: Control word

N: Number of bytes to store
 0000 to 0100 hex (0 to 256 decimal)

Variations Executed Each Cycle for ON Condition RXD(235)

Executed Once for Upward Differentiation @RXD(235)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK
469

Serial Communications Instructions Section 3-22
Operands The contents of the control word, C, is as shown below.

Operand Specifications

Description RXD(235) reads data that has been received in no-protocol mode at the RS-
232C port or RS-422A port on the Coordinator Module (the port is specified
with bits 8 to 15 of C) and stores N bytes of data in words beginning from D. If
N bytes of data has not been received at the port, then only the data that has
been received will be stored.

The following diagram shows the order in which data is received and the con-
tents of the receive frame for various settings.

C

812 3415 0711

Byte order
0 Hex: Most significant byte to least significant byte
1 Hex: Least significant byte to most significant byte

CS and DR signal monitoring (RS-232C port only)
0: No CS and DR signal monitoring
1: CS signal monitoring
2: DR signal monitoring
3: CS and DR signal monitoring.

Port specifier
00 hex: RS-232C
80 hex: RS-422A

Area D C N

CIO Area CIO 0000 to CIO 0255

Work Area W000 to W255

Auxiliary Bit Area A448 to A649 A000 to A649

Timer Area T0000 to T0255

Counter Area C0000 to C0255

DM Area D00000 to D32767

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants --- Specified values
only

#0000 to #0100
(binary)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1
470

Serial Communications Instructions Section 3-22
Flags

Precautions RXD(235) can be used only for the RS-232C port or RS-422A port on the
Coordinator Module. In addition, the port must be set to no-protocol mode.

The following receive message frame format can be set in the System Setup.

• Start code: None or 00 to FF hex

• End code: None, CR+LF, or 00 to FF hex. If no end code is specified, the
number of bytes to receive is set from 00 to FF hex (1 to 256 decimal; 00
specifies 256 bytes).

1 2 3 4 5 6...

1 2 3 4 5 6...

1 2 3 4 5 6...

1 2 3 4 5 6...

1 2 3 4 5 6...

1 2 3 4 5 6...

2

4

6

1

3

5

1

3

5

2

4

6

1

2

3

4

5

6

LFCR

Bytes

Receive bytes: Specified
in the System Setup

Receive bytes after ST:
Specified in the System Setup

Receive bytes before
ED: 256 max.

Receive bytes between
ST and ED: 256 max.

Receive bytes before
CR+LF: 256 max.

Receive bytes between
ST and CR+LF: 256 max.

When storing data in the most sig-
nificant bytes first is specified (0):

Most signifi-
cant bytes

Least signif-
icant bytes

When storing data in the least sig-
nificant bytes first is specified (0):

Most signifi-
cant bytes

Least signifi-
cant bytes

N bytes
stored in the
specified or-
der.Max: 256 bytes

Received

RS-232C/RS-422A port on Coordinator Module

Start and CR+LF End Code

CR+LF End Code

 Start and End Code

Only End Code

Only Start Code

No Start or End Code

Name Label Operation

Error Flag ER ON if the no-protocol mode is not set in the System Setup.
ON if the value of C is not within range.

ON if the value for N is not between 0000 and 0100 hex.
OFF in all other cases.
471

Serial Communications Instructions Section 3-22
If the number of bytes is specified in the System Setup, the Reception Com-
pleted Flag (A410.10/A414.10) will turn ON when the specified number of
bytes has been received. When the Reception Completed Flag turns ON, the
number of bytes in the Reception Counter (A411/A415) will have the same
value as the number of receive bytes specified in the System Setup. If more
bytes are received than specified, the Reception Overflow Flag (A410.11/
A414.11) will turn ON.

If an end code is specified in the System Setup, the Reception Completed
Flag (A410.10/A414.10) will turn ON when the end code is received or when
256 bytes of data have been received. If more data is received after the
Reception Completed Flag (A410.10/A414.10) turns ON, the Reception Over-
flow Flag (A410.11/A414.11) will turn ON.

When RXD(235) is executed, data is stored in memory starting at D. Once the
data has been stored, the Reception Completed Flag (A410.10/A414.10) will
turn ON (OFF if the Reception Overflow Flag (A410.11/A414.11) is ON) and
the Reception Counter (A411/A415) will be cleared to 0.

If the RS-232C Port Restart Bit (A502.00) or the RS-422A Port Restart Bit
(A502.02) is turned ON, the Reception Completed Flag (A410.10/A414.10)
will be turned OFF (even if the Reception Overflow Flag is ON), and the
Reception Counter (A411/A415) will be cleared to 0.

Data will be stored in memory in the order specified in C.

If 0 is specified for N, the Reception Completed Flag (A410.10/A414.10) and
Reception Overflow Flag (A410.11/A414.11) will be turned OFF, the Recep-
tion Counter (A411/A415) will be cleared to 0, and nothing will be stored in
memory.

If CS signal monitoring is specified in C, the status of the CS signal will be
stored in bit 15 of D.

If DR signal monitoring is specified in C, the status of the DR signal will be
stored in bit 15 of D.

If CS and DR signal monitoring is specified in C, the status of the CS signal
will be stored in bit 15 of D and the status of the DR signal will be stored in bit
14 of D.

Receive data will not be stored if CS or DR signal monitoring is specified.

If 1, 2, or 3 hex is specified for CS and DR signal control in C, RXD(235) will
be executed regardless of the status of the Reception Completed Flag
(A410.10/A414.10).

An error will occur and the Error Flag will turn ON in the following cases.

• If no-protocol mode is not set for the port in the System Setup

• If the value of C is not within range

• If the value for N is not between 0000 and 0100 hex

Note Further data cannot be received if RXD(235) has not completed reading the
current data. Always execute RXD(235) after receiving data and before data is
received again.
472

Serial Communications Instructions Section 3-22
Related Flags and Words The following System Setup settings and Auxiliary Area flag can be used as
required when executing RXD(235).

System Setup Settings

Auxiliary Area Flags

Name Description Settings

No-protocol
Mode Start Code

Specifies whether to use a start
code in the frame format for no-pro-
tocol communications.

0: None (default)
1: Use start code

(00 to FF hex)

No-protocol
Mode End Code

Specifies whether to use an end
code in the frame format for no-pro-
tocol communications.

0: None (default)
1: Use end code

(00 to FF hex or CF+LF)

No-protocol
Mode Number of
bytes of Data

Specifies the number of bytes to
receive when an end code is not
used.

00 hex: 256 bytes
01 to FF hex: 1 to 255 bytes

Name Address Contents

Reception Completed
Flag

A410.10 ON when no-protocol reception is completed.
Number of Receive Bytes Specified: The flag will
turn ON when the specified number of bytes has
been received.
End Code Specified: The flag will turn ON when
the end code is received or when 256 bytes have
been received.

Reception Overflow
Flag

A410.11 ON when more than the expected number of
receive bytes has been received in no-protocol
mode.
Number of Receive Bytes Specified: The flag will
turn ON when more data is received after recep-
tion was completed but before the received data
is read from the buffer with RXD(235).

End Code Specified: The flag will turn ON when
more data is received after receiving an end code
but before the received data is read from the
buffer with RXD(235), or when 257 or more bytes
of data are received without an end code.

Reception Counter A411 Counts in hexadecimal the number of bytes
received in no-protocol mode (0 to 256 decimal).

Reception Completed
Flag

A414.10 ON when no-protocol reception is completed.

Number of Receive Bytes Specified: The flag will
turn ON when the specified number of bytes has
been received.

End Code Specified: The flag will turn ON when
the end code is received or when 256 bytes have
been received.

Reception Overflow
Flag

A414.11 ON when more that the expected number of
receive bytes has been received in no-protocol
mode.
Number of Receive Bytes Specified: The flag will
turn ON when more data is received after recep-
tion was completed but before the received data
was not read from the buffer with RXD(235).
End Code Specified: The flag will turn ON when
more data is received after receiving an end code
but before the received data is read from the
buffer with RXD(235), or when 257 or more bytes
of data are received without an end code.

Reception Counter A415 Counts in hexadecimal the number of bytes
received in no-protocol mode (0 to 256 decimal).
473

Serial Communications Instructions Section 3-22
Examples When CIO 0000.00 is ON in the following example, data is received from the
RS-232C port and 10 bytes of data are stored starting in D00100.

3-22-4 CHANGE SERIAL PORT SETUP: STUP(237)
Purpose Changes the communications parameters of a serial port on the Coordinator

Module. STUP(237) thus enables the protocol mode to be changed during
FQM1 operation.

Ladder Symbol

Variations

Applicable Program Areas

D:

C: D00200
&10

00

0000.00

Stored

This example assumes that both a start and end
code have been specified in the System Setup.

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Most signifi-
cant bytes

Least signif-
icant bytes

CS and DR signal monitoring
0: No CS and DR signal monitoring

Byte order
1: Least significant bytes first

Port specifier
00 hex: RS-232C port

STUP(237)

C

S

C: Control word (port)

S: First source word

Variations Executed Each Cycle for ON Condition STUP(237)

Executed Once for Upward Differentiation @STUP(237)

Executed Once for Downward Differentiation Not supported.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK Not allowed
474

Serial Communications Instructions Section 3-22
Operands The contents of the control word, C, are as shown below.

Operand Specifications

Description STUP(237) writes 10 words of data from S to S+9 to the communications
setup area of the specified port, as shown in the following table. When the
constant #0000 is designated for S, the communications settings of the corre-
sponding port will be set to the default settings.

When STUP(237) is executed, the corresponding Port Settings Changing
Flag (A412.15, A410.15, or 414.15) will turn ON. The flag will remain ON until
changing the parameters has been completed.

Use STUP(237) to change communications parameter for a port during oper-
ation based on specified conditions. For example, STUP(237) can be used as
follows:

15 8 011 712
C

Always set to 00 hex.

Port number
1 hex: Peripheral port
2 hex: RS-232C port
3 hex: RS-422A port
4 hex: Reserved.

Always set to 0.

Area C S

CIO Area CIO 0000 to CIO 0255 CIO 0000 to CIO 0246

Work Area W000 to W255 W000 to W246

Auxiliary Bit Area A000 to A649 A000 to A640

Timer Area T0000 to T0255 T0000 to T0246

Counter Area C0000 to C0255 C0000 to C0246

DM Area D00000 to D32767 D00000 to D32758

Indirect DM addresses
in binary

@ D00000 to @ D32767

Indirect DM addresses
in BCD

*D00000 to *D32767

Constants Specified values only #0000

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Unit address Module Port No. Serial port Serial port communications
setup area

00 hex Coordinator Module 1 hex Peripheral
port

Communications parameters for
the peripheral port in the System
Setup

2 hex RS-232C port Communications parameters for
the RS-232C port in the System
Setup

3 hex RS-422A port Communications parameters for
the RS-422A port in the System
Setup
475

Serial Communications Instructions Section 3-22
The RS-422A port is set to Serial Gateway mode normally to send commands
from a PT directly to a Servo Driver. When controlling the Servomotor by
changing the parameters of the Servo Driver from the ladder program, the
RS-422A port is switched to No-protocol mode.

The following communications parameters can be set:
Protocol mode, baud rate, data format, protocol macro transfer method, maxi-
mum length of protocol macro communications data, etc.

Flags

Related Flags and Words The following flags can be used as required when executing STUP(237).
These flags are in the Auxiliary Area.

Examples When CIO 0000.00 turns ON in the following example, the communications
parameters for the RS-422A port are changed to the settings contained in the
10 words from D00100 to D00109. In this example, the setting are changed
from the Serial Gateway Mode to the No-protocol Mode.

Name Label Operation

Error Flag ER ON if the values in C are not within range.
ON if STUP(237) is executed for a port whose Communi-
cations Settings Changing Flag is already ON.

ON if STUP(237) is executed in an interrupt task.
OFF in all other cases.

Name Address Contents

Peripheral Port Settings
Changing Flag

A412.15 ON when the communications param-
eters are being changed for the periph-
eral port.

RS-232C Port Settings
Changing Flag

A410.15 ON when the communications param-
eters are being changed for the RS-
232C port.

RS-422A Port Settings
Changing Flag

A414.15 ON when the communications param-
eters are being changed for the RS-
422A port.

S: D00100

S+1: D00101

S+2: D00102

S+9: D00109

3

3

0000.00

#0300

8

8+360

+361

+362

+367

to to

to to

Port setting: Defaults, Protocol mode: 3 hex (no-protocol).

Baud rate: Default (9,600 bps)

Transferred

RS-422A port parameter area
476

Debugging Instructions Section 3-23
3-23 Debugging Instructions
This section describes the instruction used to debug programs.

3-23-1 Trace Memory Sampling: TRSM(045)
Purpose When TRSM(045) is executed, the status of a preselected bit or word is sam-

pled and stored in Trace Memory. TRSM(045) can be used anywhere in the
program, any number of times.

Ladder Symbol

Variations

Applicable Program Areas

Description Before TRSM(045) is executed, the bit or word to be traced must be specified
with the CX-Programmer. Each time that TRSM(045) is executed, the current
value of the specified bit or word is sampled and recorded in order in Trace
Memory. The trace ends when the Trace Memory is full. The contents of Trace
Memory can be monitored from the CX-Programmer when necessary.

This instruction only indicates when the specified data will be sampled. All
other settings and data trace operations are set with the CX-Programmer. The
other two ways to control data sampling are sampling at the end of each cycle
and sampling at a specified interval (independent of the cycle time).

TRSM(045) does not require an execution condition and is always executed
as if it had an ON execution condition. Connect TRSM(045) directly to the left
bus bar.

Instruction Mnemonic Function code Page

TRACE MEMORY SAMPLING TRSM 045 477

TRSM(045)

Variations Executed Each Cycle TRSM(045)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Tracing ends when
Trace Memory is full.

Trace Memory

Data sampling

Specified bit or word

I/O memory
TRSM(045) executed.
477

Debugging Instructions Section 3-23
Use TRSM(045) to sample the value of the specified bit or word at the point in
the program when the instruction’s execution condition is ON. If the instruc-
tion’s execution condition is ON every cycle, the specified bit or word’s value
will be stored in Trace Memory every cycle.

It is possible to incorporate two or more TRSM(045) instructions in a program.
In this case, the value of the same specified bit or word will be stored in Trace
Memory each time that one of the TRSM(045) instructions is executed.

Note Refer to the CX-Programmer Operation Manual (Cat. No. W437) for details on
data tracing.

The data-tracing operations performed with the CX-Programmer are summa-
rized in the following list.

1,2,3... 1. Set the following parameters with the CX-Programmer.

a) Set the address of the bit or word to be traced.

b) Set the trigger condition. One of the three following conditions can con-
trol when data stored into Trace Memory is valid.
i) The Trace Start Bit goes from OFF to ON.
ii) A specified bit goes from OFF to ON.
iii) The value of a specified word matches the set value.

c) Set the sampling interval to “TRSM” for sampling at the execution of
TRSM(045) in the program.

d) Set the delay.

2. When the Sampling Start Bit (A508.15) is turned from OFF to ON with the
CX-Programmer, the specified data will begin being sampled each time
that TRSM(045) is executed and the sampled data will be stored in Trace
Memory. The Trace Busy Flag (A508.13) will be turned ON at the same
time.

3. When the trigger condition (Trace Start Bit ON, specified bit ON, or value
of specified word matching set value) is met, the sampled data will be valid
beginning with the next sample plus or minus the number of samples set
with the delay setting. The Trace Trigger Monitor Flag (A508.11) will be
turned ON at the same time.

4. The trace will end when TRSM(045) has been executed enough times to
fill the Trace Memory. When the trace ends, the Trace Completed Flag
(A508.12) will be turned ON and the Trace Busy Flag (A508.13) will be
turned OFF.

5. Read the contents of Trace Memory with the CX-Programmer.

The following table shows relevant bits and flags in the Auxiliary Area. Only
A508.14 and A508.15 are meant to be controlled by the user, and A508.15

Use the CX-Programmer to specify
which address will be traced.

Data from
address m is
stored in
Trace
Memory.

Data from
address m is
stored in
Trace
Memory.

Data stored every cycle.

Trace Memory
478

Debugging Instructions Section 3-23
must not be turned ON from the program, i.e., it must be turned ON only from
the CX-Programmer.

Precautions TRSM(045) is processed as NOP(000) when data tracing is not being per-
formed or when the sampling interval set in the parameters with the CX-Pro-
grammer is not set to sample on TRSM(045) instruction execution.

Do not turn the Sampling Start Bit (A508.15) ON or OFF from the program.
This bit must be turned ON and OFF from the CX-Programmer.

Example The following example shows the overall data trace operation.

Name Address Operation

Trace Trigger Monitor
Flag

A508.11 This flag is turned ON when the trigger condition
has been established with the Trace Start Bit. It is
turned OFF when sampling is started for the next
trace (by the Sampling Start Bit).

Trace Completed
Flag

A508.12 This flag is turned ON when trace samples have
filled the Trace Memory. It is turned OFF the next
time that the Sampling Start Bit goes from OFF to
ON.

Trace Busy Flag A508.13 This flag is turned ON when the Sampling Start
Bit goes from OFF to ON. It is turned OFF when
the trace is completed.

Trace Start Bit A508.14 The trace trigger conditions are established when
this bit is turned from OFF to ON. The offset indi-
cated by the delay value (positive or negative)
determines which data samples are valid.

Sampling Start Bit A508.15 When this bit is turned from OFF to ON from the
CX-Programmer, data samples will start being
stored in Trace Memory with one of the following
three methods:
1) Periodic sampling (10 to 2,550 ms intervals)
2) Sampling at TRSM(045) execution
3) Sampling at the end of each cycle
This bit must be turned ON and OFF from the
CX-Programmer.
479

Debugging Instructions Section 3-23
Note Trace Memory has a ring structure. Data is stored to the end of the Trace
Memory area and then wraps to the beginning of the area, ending just before
the first valid data sample.

Sampling

Operated from CX-Programmer
(Sampling Start Bit: A508.15)

Trace Start Bit: A508.14

Trace Busy Flag: A508.13

Trace Completed Flag: A508.12

Trace Trigger Monitor Flag: A508.11

Example: word data

Trace Memory

See note.

Valid from here on

Delay
setting

Valid
samples Trace ends when

Trace Memory is full.

: Execution of TRSM(045)
480

Failure Diagnosis Instructions Section 3-24
3-24 Failure Diagnosis Instructions
This section describes instructions used to define and handle errors.

3-24-1 FAILURE ALARM: FAL(006)
Purpose Generates or clears user-defined non-fatal errors. Non-fatal errors do not stop

FQM1 operation.

Ladder Symbol • Generating or Clearing User-defined Non-fatal Errors

Variations

Applicable Program Areas

Operands Generating or Clearing User-defined Non-fatal Errors

The following table shows the function of the operands.

Note Other settings would be constants #0200 through #FFFE or a word address.

Operand Specifications

Instruction Mnemonic Function code Page

FAILURE ALARM FAL 006 481

SEVERE FAILURE ALARM FALS 007 484

N

S

FAL(006)

N: FAL number

S: #0000 or
#0000 to #FFFF

Variations Executed Each Cycle for ON Condition FAL(006)

Executed Once for Upward Differentiation @FAL(006)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

N S Function

0 #0001 to #01FF Clears the non-fatal error with the correspond-
ing FAL number.

#FFFF Clears all non-fatal errors.

Other (See note.) Clears the most serious non-fatal error.

1 to 511
(These FAL num-
bers are shared
with FALS num-
bers.)

Creating errors:
#0000

Clearing errors:
#0000 to #FFFF

Generates a non-fatal error with the corre-
sponding FAL number.

Area N S

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A000 to A649

Timer Area --- T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @ D00000 to @ D32767
481

Failure Diagnosis Instructions Section 3-24
Description The operation of FAL(006) depends on the value of N. Set N to 0000 to clear
an error and set N to 0001 to 01FF to generate an error.

Generating Non-fatal User-defined Errors

When FAL(006) is executed with N set to an FAL number (&1 to &511) that is
not equal to the content of A400 (the system-generated FAL/FALS number), a
non-fatal error will be generated with that FAL number and the following pro-
cessing will be performed:

1,2,3... 1. The FAL Error Flag (A402.15) will be turned ON. (FQM1 operation will con-
tinue.)

2. The error code will be written to A400. Error codes 4101 to 42FF corre-
spond to FAL numbers 0001 to 01FF (1 to 511).

Note If a fatal error or a more serious non-fatal error occurs at the same
time as the FAL(006) instruction, the more serious error’s error code
will be written to A400.

3. The error code will be written to the Error Log Area (A100 through A199).

4. The ERR Indicator on the Modules will flash.

Clearing Non-fatal Errors without the CX-Programmer

When FAL(006) is executed with N set to 0, non-fatal errors can be cleared.
The value of S will determine the processing, as shown in the following table.

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants 0 to 511 #0000 to #FFFF
(binary)

Indirect addressing
using Index Registers

--- ,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to
+2047 ,IR1

,IR0+(++) or ,IR1+(++)
, –(– –)IR0 or, –(– –)IR1

Area N S

S Process

&1 to &511 (0001 to 01FF hex) The FAL error of the specified number will be
cleared.

FFFF hex All non-fatal errors (including system errors) will be
cleared.

0200 to FFFE hex or word
specification

The most serious non-fatal error (even if it is a non-
fatal system error) that has occurred will be cleared.
When more than one FAL error has occurred, the
FAL error with the smallest FAL number will be
cleared.

FAL Error Flag ON
Error code written to A400
Error code and time written to Error Log Area

ERR Indicator flashes

Execution
of
FAL(006)
generates
a non-fatal
error with
FAL num-
ber N.
482

Failure Diagnosis Instructions Section 3-24
Flags

The following tables show relevant words and flags in the Auxiliary Area.

• Auxiliary Area Words/Flags for User-defined Errors

• Auxiliary Area Words/Flags for both User-defined and System Errors

Precautions N must be between 0 and 511. An error will occur and the Error Flag will be
turned ON if N is outside of the specified range.

Examples Creating a User-defined Error

When CIO 0000.00 turns ON in the following example, a non-fatal error will be
generated with FAL number 31 and the following processing will be per-
formed:

1,2,3... 1. The FAL Error Flag (A402.15) will be turned ON. (FQM1 operation will con-
tinue.)

2. The error code 411F will be written to A400. Error codes 4101 to 42FF cor-
respond to FAL numbers 0001 to 01FF (1 to 511).

Note If a fatal error or a more serious non-fatal error occurs at the same
time as or before the FAL(006) instruction, the more serious error’s
error code will be written to A400.

3. The error code will be written to the Error Log Area (A100 through A199).

4. The ERR Indicator on the Modules will flash.

Clearing a Particular Non-fatal Error
When CIO 0000.01 is ON in the following example, FAL(006) will clear the
non-fatal error with FAL number 31, and turn OFF the FAL Error Flag
(A402.15).

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0 to 511 deci-
mal.
OFF in all other cases.

Name Address Operation

FAL Error Flag A402.15 ON when an error is generated with
FAL(006).

Name Address Operation

Error Log Area A100 to
A199

The Error Log Area contains the error codes
for the most recent 20 errors, including errors
generated by FAL(006).

Error code A400 When an error occurs, its error code is stored
in A400. The error codes for FAL numbers
0001 to 01FF are 4101 to 42FF, respectively.
If two or more errors occur simultaneously,
the error code of the most serious error will
be stored in A400.

31

S

0000.00

#0
483

Failure Diagnosis Instructions Section 3-24
Clearing All Non-fatal Errors
When CIO 0000.02 is ON in the following example, FAL(006) will clear all of
the non-fatal errors, and turn OFF the FAL Error Flag (A402.15).

Clearing the Most Serious Non-fatal Error
When CIO 0000.03 is ON in the following example, FAL(006) will clear the
most serious non-fatal error that has occurred and reset the error code in
A400. If the cleared error was originally generated by FAL(006), the FAL Error
Flag (A402.15) will be turned OFF.

3-24-2 SEVERE FAILURE ALARM: FALS(007)
Purpose Generates user-defined fatal errors. Fatal errors stop FQM1 operation.

Ladder Symbol

Variations

Applicable Program Areas

Operands The following table shows the function of the operands.

S #001F

0000.01

 0 Set N to 0 to clear errors.

Set S to the desired FAL
number (031(001F)).

S

0000.02

 0

#FFFF

Set N to 0 to clear errors.

Set S to FFFF to clear all non-fatal errors
(both FAL(006) and system errors).

S #0000

0000.03

 0 Set N to 0 to clear errors.
Set S to 0000, another constant between
0200 and FFFE, or a word address to
clear the most serious non-fatal error.
(In this case, S is set to 0000.)

FALS(007)

N

S

N: FALS number

S: Constant #0000

Variations Executed Each Cycle for ON Condition FALS(007)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Operand Function

N 1 to 511 (These FALS numbers are shared with FAL numbers.)

S Specify #0000.
484

Failure Diagnosis Instructions Section 3-24
Operand Specifications

Description FALS(007) generates user-defined error.

1,2,3... 1. The FALS Error Flag (A401.06) will be turned ON. (FQM1 operation will
stop.)

2. The error code will be written to A400. Error codes C101 to C2FF corre-
spond to FALS numbers 0001 to 01FF (1 to 511).

Note If an error more serious than the FALS(007) instruction (one with a
higher error code) has occurred, A400 will contain the more serious
error’s error code.

3. The error code will be written to the Error Log Area (A100 through A199).

4. The ERR Indicators on the FQM1 Modules will be lit.

Note Input #1 to #511 for the FALS number on the CX-Programmer.

Clearing FALS(007) User-defined Fatal Errors

To clear errors generated by FALS(007), first eliminate the cause of the error,
and then either clear the error from the CX-Programmer or turn the FQM1
OFF and then ON again.

Flags

The following tables show relevant words and flags in the Auxiliary Area.

• Auxiliary Area Words/Flags for User-defined Errors Only

Area N S

CIO Area --- CIO 0000 to CIO 0255

Work Area --- W000 to W255

Auxiliary Bit Area --- A000 to A649

Timer Area --- T0000 to T0255

Counter Area --- C0000 to C0255

DM Area --- D00000 to D32767

Indirect DM addresses
in binary

--- @ D00000 to @ D32767

Indirect DM addresses
in BCD

--- *D00000 to *D32767

Constants 1 to 511 #0000 to #FFFF
(binary)

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 or ,IR1

–2048 to +2047 ,IR0 or –2048 to +2047
,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Name Label Operation

Error Flag ER ON if N is not within the specified range 1 to 511.
OFF in all other cases.

Name Address Operation

FALS Error Flag A401.06 ON when an error is generated with
FALS(007).
485

Other Instructions Section 3-25
• Auxiliary Area Words/Flags for both User-defined and System Errors

Precautions N must be between 0001 and 01FF. An error will occur and the Error Flag will
be turned ON if N is outside of the specified range.

Examples Generating a User-defined Error
When CIO 0000.00 is ON in the following example, FALS(007) will generate a
fatal error with FALS number 31 and execute the following processes.

1,2,3... 1. The FALS Error Flag (A401.06) will be turned ON.

2. The corresponding error code (C11F) will be written to A400.

Note A400 will contain the error code of the most serious of all of the errors
that have occurred, including non-fatal and fatal system errors, as
well as errors generated by FAL(006) and FAL(007).

3. The error code will be written to the Error Log Area (A100 through A199).

4. The ERR Indicators on the Modules will be lit.

3-25 Other Instructions
This section describes instructions for manipulating the Carry Flag, selecting
the EM bank, and extending the maximum cycle time.

3-25-1 SET CARRY: STC(040)
Sets the Carry Flag (CY).

Ladder Symbol

Variations

Name Address Operation

Error Log Area A100 to
A199

The Error Log Area contains the error codes
for the most recent 20 errors, including errors
generated by FALS(007).

Error code A400 When an error occurs, its error code is stored
in A400. The error codes for FALS numbers
0001 to 01FF (1 to 511 decimal) are C101 to
C2FF, respectively.
If two or more errors occur simultaneously, the
error code of the most serious error will be
stored in A400.

 31

S

0000.00

#0000

Instruction Mnemonic Function code Page

SET CARRY STC 040 486

CLEAR CARRY CLC 041 487

STC(040)

Variations Executed Each Cycle for ON Condition STC(040)

Executed Once for Upward Differentiation @STC(040)

Executed Once for Downward Differentiation Not supported.
486

Other Instructions Section 3-25
Applicable Program Areas

Description When the execution condition is ON, STC(040) turns ON the Carry Flag (CY).
Although STC(040) turns the Carry Flag ON, the flag will be turned ON/OFF
by the execution of subsequent instructions that affect the Carry Flag.

Flags

Precautions ROL(027), ROLL(572), ROR(028), and RORL(573) make use of the Carry
Flag in their rotation shift operations. When using any of these instructions,
use STC(040) and CLC(041) to set and clear the Carry Flag.

3-25-2 CLEAR CARRY: CLC(041)
Purpose Turns OFF the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Description When the execution condition is ON, CLC(041) turns OFF the Carry Flag
(CY). Although CLC(041) turns the Carry Flag OFF, the flag will be turned ON/
OFF by the execution of subsequent instructions which affect the Carry Flag.

Flags

Precautions +C(402), +CL(403), +BC(406), and +BCL(407) make use of the Carry Flag in
their addition operations. Use CLC(041) just before any of these instructions
to prevent any influence from other preceding instructions.

–C(412), –CL(413), –BC(416), and –BCL(417) make use of the Carry Flag in
their subtraction operations. Use CLC(041) just before any of these instruc-
tions to prevent any influence from other preceding instructions.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Name Label Operation

Error Flag ER Unchanged

Equals Flag = Unchanged

Carry Flag CY ON

Negative Flag N Unchanged

CLC(041)

Variations Executed Each Cycle for ON Condition CLC(041)

Executed Once for Upward Differentiation @CLC(041)

Executed Once for Downward Differentiation Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Name Label Operation

Error Flag ER Unchanged

Equals Flag = Unchanged

Carry Flag CY OFF

Negative Flag N Unchanged
487

Block Programming Instructions Section 3-26
ROL(027), ROLL(572), ROR(028), and RORL(573) make use of the Carry
Flag in their rotation shift operations. When using any of these instructions,
use STC(040) and CLC(041) to set and clear the Carry Flag.

Note The +(400), +L(401), +B(404), +BL(405), –(410), –L(411), –B(414), and
–BL(415) instructions do not include the Carry Flag in their addition and sub-
traction operations. In general, use these instructions when performing addi-
tion or subtraction.

3-26 Block Programming Instructions
This section describes block programs and the block programming instruc-
tions.

3-26-1 Introduction

Block Programs
Up to 128 block programs can be created within the overall user program (all
tasks). The execution of each block program is controlled by a single execu-
tion condition. All instructions between BPRG(096) and BEND(801) are exe-
cuted unconditionally when the execution condition for BPRG(096) is turned
ON. The execution of all the block programming instructions except for
BPRG(096) is not affected by the execution condition. This allows program-
ming that is to be executed under a single execution condition to be grouped
together in one block program.

Each block is started by one execution condition in the ladder diagram and all
instructions within the block are written in mnemonic form. The block program
is thus a combination of ladder and mnemonic instructions.

Block programs enable programming operations that can be difficult to pro-
gram with ladder diagrams, such as conditional branches and step progres-
sions.

Instruction Mnemonic Function code Page

BLOCK PROGRAM BEGIN BPRG 096 491

BLOCK PROGRAM END BEND 801 491

IF (NOT) IF (NOT) 802 494

ELSE ELSE 803 494

IF END IEND 804 494
488

Block Programming Instructions Section 3-26
The following example shows two block programs.

Tasks and Block Programs
Block programs can be located within tasks. While tasks are used to divide
large programming units, block programs can be used within tasks to further
divide programming into smaller units controlled with a single ladder diagram
execution condition.

Just like tasks, block programs that are not executed (i.e., which have an OFF
input condition) do not require execution time and can thus be used to reduce
the cycle time (somewhat the same as jumps). Also like tasks, other blocks
can be paused or restarted from within a block program.

There are, however, differences between tasks and block programs. One dif-
ference is that input conditions are not used within block programs unless
intentionally programmed with IF(802) instructions. Also, there are some
instructions that cannot be used within block programs, such as those that
detect upward and downward differentiation.

Block programs can be used either within cyclic tasks or interrupt tasks. Each
block program number from 0 to 127 can be used only once and cannot be
used again, even in a different task.

1

2

0000.05

0000.03
0000.04

0000.15

0000.00

0000.01

Block program area No. 1

When CIO 0000.00 is ON, the contents
of block program 1 will be executed.
The MOV(021) and SET instructions
will be executed unconditionally and
the block program will end.

Block program area No. 2

When CIO 0000.01 is ON, the contents
of block program 2 will be executed. If
CIO 0000.03 and CIO 0000.04 are both
ON, the binary addition will be performed
(CIO 0002 + #000A→D00001).
If one or both of these bits is OFF,
#0001 will be moved to D00001. CIO
0000.15 will then be set unconditionally
and the block program will end.

Program

Block program 001

Block program n

Task 1
489

Block Programming Instructions Section 3-26
Using Block Programming Instructions
Basically speaking, IF(802), ELSE(803), and IEND(810) are used for execu-
tion conditions (along with bits) inside block programs.

If “A” or “B” is to be executed, then IF A ELSE B IEND are used as shown
below.

 If “A” or nothing is to be executed, IF A IEND are used as shown below.

Instructions Taking Execution Conditions within Block Programs
The following instruction can take execution conditions within a block pro-
gram.

Instructions with Application Restrictions within Block Programs
The instructions listed in the following table can be used only to create execu-
tion conditions for IF(802) and cannot be used by themselves. The execution
of these instructions may be unpredictable if used by themselves or in combi-
nation with any other instructions.

 "B" executed
(after ELSE).

 "A" executed (be-
tween IF and ELSE).

Execution
condition ON?

Execution
condition

Execution
condition Execution

condition ON?

 "A" executed (be-
tween IF and IEND).

Instruction type Instruction
name

Mnemonic

Block programming instructions IF (NOT) IF (NOT)

Mnemonic Name

LD/LD NOT LOAD/LOAD NOT

AND/AND NOT AND/AND NOT

OR/OR NOT OR/OR NOT

>, <, =, >=, <=, <> (S) (L) Symbol Comparison Instruction (not
right-hand instructions)

0000.00
0001.00

0000.00
0001.00

Good Example Bad Example

Used as
execution
condition
for IF.

Cannot be
used as
execution
condition
for
MOV(021).
490

Block Programming Instructions Section 3-26
Instructions Not Applicable in Block Programs
The instructions listed in the following table cannot be used within block pro-
grams.

Note JMP(004) and JME(005) can be used. JMP(004) does not take any execution
condition and jumps to JME(005) unconditionally.

3-26-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801)
Purpose Define a block programming area. For every BPRG(096), there must be a cor-

responding BEND(801).

Ladder Symbols BLOCK PROGRAM BEGIN

BLOCK PROGRAM END

BEND(801)

Variations BPRG(096)

BEND(801)

Instruction
group

Mnemonic Name Alternative

Sequence
Output
Instructions

OUT OUTPUT Use SET and RSET.

OUT NOT OUTPUT NOT

DIFU(013) DIFFERENTIATE UP None

DIFD(014) DIFFERENTIATE DOWN None

KEEP(011) KEEP None

Sequence
Control
Instructions

IL(002) and
ILC(003)

INTERLOCK and INTER-
LOCK CLEAR

Divide the block program
into smaller blocks.

END(001) END Use BEND(801).

Timer and
Counter
Instructions

TIM TIMER None

TIMH(015) HIGH-SPEED TIMER

TMHH(540) ONE-MS TIMER

CNT COUNTER

CNTR(012) REVERSIBLE COUNTER

Subroutine
Instructions

SBN(092)
and
RET(093)

SUBROUTINE ENTRY
and SUBROUTINE
RETURN

None

Shift Instruc-
tions

SFT(010) SHIFT REGISTER Use other Shift Instruc-
tions.

Upward and
Downward
Differenti-
ated Instruc-
tions

Mnemonics
with @

Upward Differentiated
Instructions

None

Mnemonics
with %

Downward Differentiated
Instructions

None

BPRG(096)

N N: Block program number

Variations Executed Each Cycle for ON Condition BPRG(096)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Variations Always Executed in Block Program
491

Block Programming Instructions Section 3-26
Applicable Program Areas

Note BPRG(096) is allowed only once at the beginning of each block program.

Operands N: Block Program Number
The block program number must be between 0 and 127 decimal.

Operand Specifications
(BPRG(096))

Description BPRG(096) executes the block program with the block number designated in
N, i.e., the one immediately after it and ending with BEND(801). All instruc-
tions between BPRG(096) and BEND(801) are executed with ON execution
conditions (i.e., unconditionally).

When the execution condition for BPRG(096) is OFF, the block program will
not be executed and no execution time will be required for the instructions in
the block program.

Flags BPRG(096)

Block program areas Step program areas Subroutines Interrupt tasks

(See note.) OK OK OK

Area N

CIO Area ---

Work Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0 to 127 (decimal)

Index Registers ---

Indirect addressing
using Index Registers

Block program
Executed when the execu-
tion condition is ON.

Name Label Operation

Error Flag ER ON if BPRG(096) is already being executed.
ON if N is not between 0 and 127 (BCD).

ON if the same block program number is used more than
once.
OFF in all other cases.
492

Block Programming Instructions Section 3-26
BEND(801)

Precautions Each block program number can be used only once within the entire user pro-
gram. Block programs cannot be nested.

If the block program is in an interlocked program section and the execution
condition for IL(002) is OFF, the block program will not be executed.

BPRG(096) and the corresponding BEND(801) must be in the same task.

An error will occur and the Error Flag will turn ON if BPRG(096) is in the mid-
dle of a block program, BEND(801) is not in a block program, N is not between
#0000 and #007F (binary), there is no block program, or if the same block pro-
gram number is used more than once.

Examples When CIO 0000.00 turns ON in the following example, block program 0 will be
executed. When CIO 0000.00 is OFF, the block program will not be executed.

The two program sections shown below both execute MOV(021), ++B(594),
and SET for the same execution condition (i.e., when CIO 0000.00 turns ON).

Name Label Operation

Error Flag ER ON if a block program is not being executed.

OFF in all other cases.

to

to

Nesting NOT possible.

0

0000.00

Block program 0
493

Block Programming Instructions Section 3-26
3-26-3 Branching: IF (NOT)(802), ELSE(803), and IEND(804)
Purpose Branches the block program either based on an execution condition or on the

status of an operand bit.

Ladder Symbol

Variations

Applicable Program Areas

Note IF(802), ELSE(803), and IEND(804) can be used in block programming
regions within subroutines and interrupt tasks.

Operand Specifications

0

0000.00 0000.00

0000.01

0000.01

IF(802) B

IF(802)

B

ELSE(803)

IEND(804)

IF(802) NOT

B: Bit operand

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 0000.00 to CIO 255.15

Work Area W000.00 to W255.15

Auxiliary Bit Area A00000 to A649.15

Timer Area T0000 to T0255

Counter Area C0000 to C0255

Task Flags TK0000

Condition Flags ER, CY, >, =, <, N, OF, UF, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---
494

Block Programming Instructions Section 3-26
Description Operation without an Operand for IF(802)

If an operand bit is not specified, an execution condition must be created
before IF(802) starting with LD. If the execution condition is ON, the instruc-
tions between IF(802) and ELSE(803) will be executed and if the execution
condition is OFF, the instructions between ELSE(803) and IEND(804) will be
executed.

If the ELSE(803) instruction is omitted and the execution condition is ON, the
instructions between IF(802) and IEND(804) will be executed and if the execu-
tion condition is OFF, only the instructions after IEND(804) will be executed.

Operation with an Operand for IF(802) or IF NOT(802)

An operand bit, B, can be specified for IF(802) or IF NOT(802). If the operand
bit is ON, the instructions between IF(802) and ELSE(803) will be executed. If
the operand bit is OFF, the instructions between ELSE(803) and IEND(804)
will be executed. For IF NOT(802), the instructions between IF(802) and
ELSE(803) will be executed if the operand bit is OFF, and the instructions
between ELSE(803) and IEND(804) will be executed if the operand bit is ON.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 or ,IR1
–2048 to +2047 ,IR0 or –2048 to +2047 ,IR1
,IR0+(++) or ,IR1+(++)

, –(– –)IR0 or, –(– –)IR1

Area B

 "B" executed
(after ELSE).

Execution
condition ON?

 "A" executed (be-
tween IF and ELSE).

Execution
condition

Execution
condition ON?

 "A" executed (be-
tween IF and IEND).

Execution
condition

IF R (IF NOT B)
Operand bit

ON (OFF for IF
NOT)?

 "B" executed
(after ELSE).

 "A" executed (be-
tween IF and ELSE).
495

Block Programming Instructions Section 3-26
If the ELSE(803) instruction is omitted and the operand bit is ON, the instruc-
tions between IF(802) and IEND(804) will be executed and if the operand bit
is OFF, only the instructions after IEND(804) will be executed. The same will
happen for the opposite status of the operand bit if IF NOT(802) is used.

Flags

Precautions Instructions in block programs are generally executed unconditionally. Branch-
ing, however, can be used to create conditional execution based on execution
conditions or operand bits.

Use IF A ELSE B IEND to branch between A and B.

Use IF A IEND to branch between A and doing nothing.

Branches can be nested to up to 253 levels.

A error will occur and the Error Flag will turn ON if the branch instructions are
not in a block program or if more than 253 branches are nested.

Nesting Branches Up to 253 branches can be nested within the top level branch.

Examples The following example shows two different block programs controlled by
CIO 0000.00 and CIO 0000.02.

The first block executes one of two additions depending on the status of
CIO 0000.01. This block is executed when CIO 0000.00 is ON. If CIO 0000.01
is ON, 0001 is added to the contents of CIO 0001. If CIO 0000.01 is OFF,
0002 is added to the contents of CIO 0001. In either case, the result is placed
in D00000.

The second block is executed when CIO 0000.02 is ON and shows nesting
two levels. If CIO 0000.03 and CIO 0000.04 are both ON, the contents of
CIO 0012 and CIO 0002 are added and the result is placed in D00010 and
then 0001 is moved into D00011 based on the status of CY. If either
CIO 0000.03 or CIO 0000.04 is OFF, then the entire addition operation is
skipped and CIO 0003.01 is turned ON.

IF R (IF NOT B)
Operand bit

ON (OFF for IF
NOT)?

 "A" executed (be-
tween IF and IEND).

Name Label Operation

Error Flag ER ON if the branch instructions are not in a block program.
ON if more than 253 branches are nested.
OFF in all other cases.
496

Block Programming Instructions Section 3-26
Address Instruction Operands

000000 LD 0000.00

000001 BPRG(096) 0

000002 IF(802) 0000.01

000003 +B(404)

0001

#0001

D00000

000004 ELSE(803)

000005 +B(404)

0001

#0002

D00000

000006 IEND(804)

000007 BEND(801)

000008 LD 0000.02

000009 BPRG(096) 1

000010 LD 0000.03

000011 AND 0000.04

000012 IF(802)

000013 +B(404)

0012

0002

D00010

000014 IF(802) CY

000015 MOV(030)

#0001

D00011

000016 IEND(804)

000017 ELSE(803)

000018 SET(016) 0003.01

000019 IEND(804)

000020 BEND(801)

+B(404)

ELSE(803)
+B(404)

IEND(804)
BEND(801)

IF(802)
+B(404)

MOV(030)

IEND(804)
ELSE(803)

IF(802) 0000.01

 0001
 #0001
 D00000

 0001
 #0002
 D00000

LD
AND

 0012
 0002
 D00010

P_CYIF(802)

 #0001
 D00011

SET(016) 0003.01
IEND(804)
BEND(801)

0000.00

0000.02

0

1

0000.03
0000.04
497

Block Programming Instructions Section 3-26
498

SECTION 4
Instruction Execution Times and Number of Steps

This section provides instruction execution times and the number of steps for each FQM1 instruction.

4-1 FQM1 Instruction Execution Times and Number of Steps. 500

4-1-1 Sequence Input Instructions . 500

4-1-2 Sequence Output Instructions . 501

4-1-3 Sequence Control Instructions . 501

4-1-4 Timer and Counter Instructions . 501

4-1-5 Comparison Instructions. 502

4-1-6 Data Movement Instructions. 503

4-1-7 Data Shift Instructions . 503

4-1-8 Increment/Decrement Instructions . 504

4-1-9 Symbol Math Instructions. 505

4-1-10 Conversion Instructions . 506

4-1-11 Logic Instructions . 506

4-1-12 Special Math Instructions . 507

4-1-13 Floating-point Math Instructions . 507

4-1-14 Table Data Processing Instructions. 508

4-1-15 Data Control Instructions . 509

4-1-16 Subroutine Instructions. 509

4-1-17 Interrupt Control Instructions . 509

4-1-18 High-speed Counter and Pulse Output Instructions
(Only for Motion Control Modules) . 510

4-1-19 Step Instructions . 511

4-1-20 I/O Refresh Instructions . 511

4-1-21 Serial Communications Instructions. 511

4-1-22 Debugging Instructions. 512

4-1-23 Failure Diagnosis Instructions . 512

4-1-24 Other Instructions . 512

4-1-25 Block Programming Instructions . 512
499

FQM1 Instruction Execution Times and Number of Steps Section 4-1
4-1 FQM1 Instruction Execution Times and Number of Steps
The following table lists the execution times for all instructions that are avail-
able for the FQM1.

The total execution time of instructions within one whole user program is the
process time for program execution when calculating the cycle time. (See
note.)

Note User programs are allocated tasks that can be executed within cyclic tasks
and interrupt tasks that satisfy interrupt conditions.

Execution times for most instructions differ depending on the conditions when
the instruction is executed. The top line for each instruction in the following
table shows the minimum time required to process the instruction and the
necessary execution conditions, and the bottom line shows the maximum time
and execution conditions required to process the instruction.

The execution time can also vary when the execution condition is OFF.

The following table also lists the length of each instruction in the Length
(steps) column. The number of steps required in the user program area for
each of the instructions varies from 1 to 7 steps, depending upon the instruc-
tion and the operands used with it. The number of steps in a program is not
the same as the number of instructions.

Note 1. Program capacity for the FQM1 is measured in steps. Basically speaking,
1 step is equivalent to 1 word.

Most instructions are supported in differentiated form (indicated with ↑, ↓,
@, and %). Specifying differentiation will increase the execution times by
the following amounts.

2. Use the following time as a guideline when instructions are not executed.
Approx. 0.2 to 0.5 µs

4-1-1 Sequence Input Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

Symbol µs
↑ or ↓ +0.5

@ or % +0.5

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

LOAD LD --- 1 0.10 Yes ---

LOAD NOT LD NOT --- 1 0.10 Yes ---

AND AND --- 1 0.10 Yes ---

AND NOT AND NOT --- 1 0.10 Yes ---

OR OR --- 1 0.10 Yes ---

OR NOT OR NOT --- 1 0.10 Yes ---

AND LOAD AND LD --- 1 0.05 Yes ---

OR LOAD OR LD --- 1 0.05 Yes ---
500

FQM1 Instruction Execution Times and Number of Steps Section 4-1
4-1-2 Sequence Output Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-3 Sequence Control Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-4 Timer and Counter Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

OUTPUT OUT --- 1 0.35 Yes ---

OUTPUT NOT OUT NOT --- 1 0.35 Yes ---

KEEP KEEP 011 1 0.40 Yes ---

DIFFERENTIATE
UP

DIFU 013 2 0.50 Yes ---

DIFFERENTIATE
DOWN

DIFD 014 2 0.50 Yes ---

SET SET --- 1 0.30 Yes ---

RESET RSET --- 1 0.30 Yes ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

END END 001 1 7.0 Yes ---

NO OPERATION NOP 000 1 0.05 Yes ---

INTERLOCK IL 002 1 0.15 Yes ---

INTERLOCK CLEAR ILC 003 1 0.15 Yes ---

JUMP JMP 004 2 0.95 Yes ---

JUMP END JME 005 2 --- --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

TIMER TIM --- 3 1.30 Yes ---

COUNTER CNT --- 3 1.30 Yes ---

HIGH-SPEED
TIMER

TIMH 015 3 1.80 Yes ---

ONE-MS TIMER TMHH 540 3 1.75 Yes ---

REVERSIBLE
COUNTER

CNTR 012 3 24.8 --- ---
501

FQM1 Instruction Execution Times and Number of Steps Section 4-1
4-1-5 Comparison Instructions
Instruction Mnemonic Code Length

(steps)
(See

note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

Input Comparison
Instructions
(unsigned)

LD, AND, OR += 300 4 0.35 Yes ---

LD, AND, OR + <> 305

LD, AND, OR + < 310

LD, AND, OR +<= 315

LD, AND, OR +> 320

LD, AND, OR +>= 325

Input Comparison
Instructions (double,
unsigned)

LD, AND, OR +=+L 301 4 0.35 Yes ---

LD, AND, OR
+<>+L

306

LD, AND, OR +<+L 311

LD, AND, OR
+<=+L

316

LD, AND, OR +>+L 321

LD, AND, OR
+>=+L

326

Input Comparison
Instructions (signed)

LD, AND, OR +=+S 302 4 0.35 Yes ---

LD, AND, OR
+<>+S

307

LD, AND, OR +<+S 312

LD, AND, OR
+<=+S

317

LD, AND, OR +>+S 322

LD, AND, OR
+>=+S

327

Input Comparison
Instructions (double,
signed)

LD, AND, OR
+=+SL

303 4 0.35 Yes ---

LD, AND, OR
+<>+SL

308

LD, AND, OR
+<+SL

313

LD, AND, OR
+<=+SL

318

LD, AND, OR
+>+SL

323

LD, AND, OR
+>=+SL

328

COMPARE CMP 020 3 0.10 Yes ---

DOUBLE COMPARE CMPL 060 3 0.50 Yes ---

SIGNED BINARY
COMPARE

CPS 114 3 0.30 Yes ---

DOUBLE SIGNED
BINARY COMPARE

CPSL 115 3 0.50 Yes ---

TABLE COMPARE TCMP 085 4 30.3 --- ---

MULTIPLE COM-
PARE

MCMP 019 4 47.5 --- ---

UNSIGNED BLOCK
COMPARE

BCMP 068 4 50.3 --- ---
502

FQM1 Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-6 Data Movement Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-7 Data Shift Instructions

EXPANDED BLOCK
COMPARE

BCMP2 502 4 15.3 --- Number of data
words: 1

689.1 --- Number of data
words: 255

AREA RANGE
COMPARE

ZCP 088 3 11.6 --- ---

DOUBLE AREA
RANGE COMPARE

ZCPL 116 3 11.4 --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

MOVE MOV 021 3 0.30 Yes ---

DOUBLE MOVE MOVL 498 3 0.60 Yes ---

MOVE NOT MVN 022 3 0.35 Yes ---

DOUBLE MOVE
NOT

MVNL 499 3 0.60 Yes ---

MOVE BIT MOVB 082 4 0.50 Yes ---

MOVE DIGIT MOVD 083 4 0.50 Yes ---

BLOCK TRANSFER XFER 070 4 0.8 Yes Transferring 1 word

650.2 Yes Transferring 1,000 words

BLOCK SET BSET 071 4 0.55 Yes Setting 1 word

400.2 Yes Setting 1,000 words

DATA EXCHANGE XCHG 073 3 0.80 Yes ---

SINGLE WORD DIS-
TRIBUTE

DIST 080 4 10.5 --- ---

DATA COLLECT COLL 081 4 10.5 --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

SHIFT REGISTER SFT 010 3 12.4 --- Shifting 1 word

368.1 --- Shifting 1,000 words

REVERSIBLE
SHIFT REGISTER

SFTR 084 4 14.0 --- Shifting 1 word

1.44 ms --- Shifting 1,000 words

ASYNCHRONOUS
SHIFT REGISTER

ASFT 017 4 13.9 --- Shifting 1 word

3.915 ms --- Shifting 1,000 words

WORD SHIFT WSFT 016 4 9.7 --- Shifting 1 word

728.1 --- Shifting 1,000 words

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions
503

FQM1 Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-8 Increment/Decrement Instructions

ARITHMETIC SHIFT
LEFT

ASL 025 2 0.45 Yes ---

DOUBLE SHIFT
LEFT

ASLL 570 2 0.80 Yes ---

ARITHMETIC SHIFT
RIGHT

ASR 026 2 0.45 Yes ---

DOUBLE SHIFT
RIGHT

ASRL 571 2 0.80 Yes ---

ROTATE LEFT ROL 027 2 0.45 Yes ---

DOUBLE ROTATE
LEFT

ROLL 572 2 0.80 Yes ---

ROTATE LEFT
WITHOUT CARRY

RLNC 574 2 0.45 Yes ---

DOUBLE ROTATE
LEFT WITHOUT
CARRY

RLNL 576 2 0.80 Yes ---

ROTATE RIGHT ROR 028 2 0.45 Yes ---

DOUBLE ROTATE
RIGHT

RORL 573 2 0.80 Yes ---

ROTATE RIGHT
WITHOUT CARRY

RRNC 575 2 0.45 Yes ---

DOUBLE ROTATE
RIGHT WITHOUT
CARRY

RRNL 577 2 0.80 Yes ---

ONE DIGIT SHIFT
LEFT

SLD 074 3 10.1 --- Shifting 1 word

1.208 ms --- Shifting 1,000 words

ONE DIGIT SHIFT
RIGHT

SRD 075 3 11.7 --- Shifting 1 word

1.775 ms --- Shifting 1,000 words

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

INCREMENT
BINARY

++ 590 2 0.45 Yes ---

DOUBLE INCRE-
MENT BINARY

++L 591 2 0.80 Yes ---

DECREMENT
BINARY

– – 592 2 0.45 Yes ---

DOUBLE DECRE-
MENT BINARY

– –L 593 2 0.80 Yes ---

INCREMENT BCD ++B 594 2 12.1 --- ---

DOUBLE INCRE-
MENT BCD

++BL 595 2 9.37 --- ---

DECREMENT BCD – –B 596 2 11.5 --- ---

DOUBLE DECRE-
MENT BCD

– –BL 597 2 9.3 --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions
504

FQM1 Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-9 Symbol Math Instructions
Instruction Mne-

monic
Code Length

(steps)
(See

note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

SIGNED BINARY
ADD WITHOUT
CARRY

+ 400 4 0.30 Yes ---

DOUBLE SIGNED
BINARY ADD WITH-
OUT CARRY

+L 401 4 0.60 Yes ---

SIGNED BINARY
ADD WITH CARRY

+C 402 4 0.40 Yes ---

DOUBLE SIGNED
BINARY ADD WITH
CARRY

+CL 403 4 0.60 Yes ---

BCD ADD WITH-
OUT CARRY

+B 404 4 16.3 --- ---

DOUBLE BCD ADD
WITHOUT CARRY

+BL 405 4 22.9 --- ---

BCD ADD WITH
CARRY

+BC 406 4 17.2 --- ---

DOUBLE BCD ADD
WITH CARRY

+BCL 407 4 24.1 --- ---

SIGNED BINARY
SUBTRACT WITH-
OUT CARRY

– 410 4 0.3 Yes ---

DOUBLE SIGNED
BINARY SUB-
TRACT WITHOUT
CARRY

–L 411 4 0.60 Yes ---

SIGNED BINARY
SUBTRACT WITH
CARRY

–C 412 4 0.40 Yes ---

DOUBLE SIGNED
BINARY SUB-
TRACT WITH
CARRY

–CL 413 4 0.60 Yes ---

BCD SUBTRACT
WITHOUT CARRY

–B 414 4 16.3 --- ---

DOUBLE BCD SUB-
TRACT WITHOUT
CARRY

–BL 415 4 23.1 --- ---

BCD SUBTRACT
WITH CARRY

–BC 416 4 18.1 --- ---

DOUBLE BCD SUB-
TRACT WITH
CARRY

–BCL 417 4 24.2 --- ---

SIGNED BINARY
MULTIPLY

* 420 4 0.65 Yes ---

DOUBLE SIGNED
BINARY MULTIPLY

*L 421 4 12.8 --- ---

UNSIGNED BINARY
MULTIPLY

*U 422 4 0.75 Yes ---
505

FQM1 Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-10 Conversion Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-11 Logic Instructions

DOUBLE
UNSIGNED BINARY
MULTIPLY

*UL 423 4 12.4 --- ---

BCD MULTIPLY *B 424 4 16.9 --- ---

DOUBLE BCD MUL-
TIPLY

*BL 425 4 34.7 --- ---

SIGNED BINARY
DIVIDE

/ 430 4 0.70 Yes ---

DOUBLE SIGNED
BINARY DIVIDE

/L 431 4 11.9 --- ---

UNSIGNED BINARY
DIVIDE

/U 432 4 0.8 Yes ---

DOUBLE
UNSIGNED BINARY
DIVIDE

/UL 433 4 11.9 --- ---

BCD DIVIDE /B 434 4 18.3 --- ---

DOUBLE BCD
DIVIDE

/BL 435 4 26.7 --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

BCD-TO-BINARY BIN 023 3 0.40 Yes ---

DOUBLE BCD-TO-
DOUBLE BINARY

BINL 058 3 7.4 --- ---

BINARY-TO-BCD BCD 024 3 8.0 --- ---

DOUBLE BINARY-
TO-DOUBLE BCD

BCDL 059 3 8.0 --- ---

2’S COMPLEMENT NEG 160 3 0.35 Yes ---

DOUBLE 2’S COM-
PLEMENT

NEGL 161 3 0.60 Yes ---

ASCII CONVERT ASC 086 4 11.8 --- Converting 1 digit into ASCII

18.1 --- Converting 4 digits into ASCII

ASCII TO HEX HEX 162 4 12.2 --- Converting 1 digit

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

LOGICAL AND ANDW 034 4 0.30 Yes ---

DOUBLE LOGICAL
AND

ANDL 610 4 0.60 Yes ---

LOGICAL OR ORW 035 4 0.45 Yes ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions
506

FQM1 Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-12 Special Math Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-13 Floating-point Math Instructions

DOUBLE LOGICAL
OR

ORWL 611 4 0.60 Yes ---

EXCLUSIVE OR XORW 036 4 0.45 Yes ---

DOUBLE EXCLU-
SIVE OR

XORL 612 4 0.60 Yes ---

EXCLUSIVE NOR XNRW 037 4 0.45 Yes ---

DOUBLE EXCLU-
SIVE NOR

XNRL 613 4 0.60 Yes ---

COMPLEMENT COM 029 2 0.45 Yes ---

DOUBLE COMPLE-
MENT

COML 614 2 0.80 Yes ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

ARITHMETIC PRO-
CESS

APR 069 4 24.3 --- Linear approximation specifica-
tion, normal

12.1 --- Linear approximation table
transfer, 1 word

126.1 --- Linear approximation table
transfer, 128 words

241.3 --- Linear approximation table
transfer, 256 words

21.5 --- Linear approximation buffer
specification, 256 words,
beginning

186.9 --- Linear approximation buffer
specification, 256 words, end

104.5 --- Linear approximation buffer
specification, 128 words, end

BIT COUNTER BCNT 067 4 0.65 Yes Counting 1 word

VIRTUAL AXIS AXIS 981 4 47.9 --- Relative mode

48.1 --- Absolute mode

8.3 --- Stopping processing

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

FLOATING TO 32-
BIT

FIXL 451 3 7.4 --- ---

32-BIT TO FLOAT-
ING

FLTL 453 3 7.0 --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions
507

FQM1 Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-14 Table Data Processing Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

FLOATING-POINT
ADD

+F 454 4 11.4 --- ---

FLOATING-POINT
SUBTRACT

–F 455 4 11.0 --- ---

FLOATING-POINT
DIVIDE

/F 457 4 11.1 --- ---

FLOATING-POINT
MULTIPLY

*F 456 4 11.0 --- ---

DEGREES TO
RADIANS

RAD 458 3 9.7 --- ---

RADIANS TO
DEGREES

DEG 459 3 9.4 --- ---

SINE SIN 460 3 15.8 --- ---

COSINE COS 461 3 15.5 --- ---

TANGENT TAN 462 3 17.5 --- ---

ARC SINE ASIN 463 3 42.7 --- ---

ARC COSINE ACOS 464 3 42.5 --- ---

ARC TANGENT ATAN 465 3 21.3 --- ---

SQUARE ROOT SQRT 466 3 25.5 --- ---

EXPONENT EXP 467 3 18.1 --- ---

LOGARITHM LOG 468 3 16.1 --- ---

EXPONENTIAL
POWER

PWR 840 4 31.5 --- ---

Floating Symbol
Comparison

LD, AND, OR +=F 329 3 8.9 --- ---

LD, AND, OR +<>F 330

LD, AND, OR +<F 331

LD, AND, OR +<=F 332

LD, AND, OR +>F 333

LD, AND, OR +>=F 334

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

FIND MAXIMUM MAX 182 4 13.0 --- Searching for 1 word

1.41 ms --- Searching for 1,000 words

FIND MINIMUM MIN 183 4 12.8 --- Searching for 1 word

1.412 ms --- Searching for 1,000 words

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions
508

FQM1 Instruction Execution Times and Number of Steps Section 4-1
4-1-15 Data Control Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-16 Subroutine Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-17 Interrupt Control Instructions

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

SCALING SCL 194 4 22.7 --- ---

SCALING 2 SCL2 486 4 21.8 --- ---

SCALING 3 SCL3 487 4 26.1 --- ---

AVERAGE AVG 195 4 27.9 --- Average of an operation

27.9 --- Average of 64 operations

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

SUBROUTINE CALL SBS 091 2 25.5 Yes ---

SUBROUTINE
ENTRY

SBN 092 2 --- --- ---

SUBROUTINE
RETURN

RET 093 1 21.9 Yes ---

MACRO MCRO 099 4 47.4 --- ---

JUMP TO SUBROU-
TINE

JSB 982 4 34.9 --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

SET INTERRUPT
MASK

MSKS 690 3 7.6 --- ---

READ INTERRUPT
MASK

MSKR 692 3 5.2 --- ---

CLEAR INTERRUPT CLI 691 3 7.2 --- ---

DISABLE INTER-
RUPTS

DI 693 1 5.3 --- ---

ENABLE INTER-
RUPTS

EI 694 1 5.6 --- ---

INTERVAL TIMER STIM 980 4 9.5 --- One-shot timer

11.0 --- One-shot pulse output

9.5 --- Scheduled interrupt

10.8 --- Reading timer PV

7.4 --- Stopping timer

17.8 --- Starting pulse counting

14.7 --- Stopping pulse counting
509

FQM1 Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-18 High-speed Counter and Pulse Output Instructions (Only for
Motion Control Modules)

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

MODE CONTROL INI 880 4 16.7 --- Starting high-speed counter
comparison

12.7 --- Stopping high-speed counter
comparison

13.3 --- Changing pulse output PV

10.9 --- Changing high-speed counter
circular value

16.7 --- Starting pulse output compari-
son

12.6 --- Stopping pulse output compar-
ison

14.9 --- Changing pulse output PV

13.1 --- Changing pulse output circular
value

12.5 --- Stopping pulse output

10.1 --- Stopping sampling counter
comparison

14.5 --- Changing sampling counter PV

13.9 --- Changing sampling counter
circular value

HIGH-SPEED
COUNTER PV
READ

PRV 881 4 13.5 --- Reading pulse output PV

15.1 --- Reading high-speed counter
PV

50.8 --- Reading analog input PV

14.3 --- Reading high-speed counter
travel distance

12.1 --- Reading high-speed counter
latched value

COMPARISON
TABLE LOAD

CTBL 882 4 36.5 --- Registering target value table
and starting comparison for 1
target value

259.6 --- Registering target value table
and starting comparison for 48
target values

22.1 --- Executing range comparison
for 1 range

113.7 --- Executing range comparison
for 16 ranges

22.1 --- Only registering target value
table for 1 target value

240.1 --- Only registering target value
table for 48 target values

20.9 --- Registering a sampling counter
target value table and starting
comparison

42.8 --- Analog output
510

FQM1 Instruction Execution Times and Number of Steps Section 4-1
4-1-19 Step Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-20 I/O Refresh Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-21 Serial Communications Instructions

SPEED OUTPUT SPED 885 4 23.7 --- Continuous mode

32.7 --- Independent mode

42.9 --- Analog output

SET PULSES PULS 886 4 15.9 --- Setting pulse output in relative
mode

16.1 --- Setting pulse output in abso-
lute mode

31.5 --- Absolute output mode (elec-
tronic cam)

PULSE OUTPUT PLS2 887 4 53.5 --- ---

ACCELERATION
CONTROL

ACC 888 4 42.5 --- Continuous mode

44.1 --- Independent mode

18.7 --- Analog output

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

STEP DEFINE STEP 008 2 24.3 --- Step control bit ON

13.0 --- Step control bit OFF

STEP START SNXT 009 2 9.1 --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

I/O REFRESH IORF 097 3 7.7 --- Refreshing 1 input word

7.6 --- Refreshing 1 output word

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

TRANSMIT TXD 236 4 24.1 --- Sending 1 byte

342.6 --- Sending 256 bytes

RECEIVE RXD 235 4 36.2 --- Storing 1 byte

348.9 --- Storing 256 bytes

CHANGE SERIAL
PORT SETUP

STUP 237 3 441.1 --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions
511

FQM1 Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-22 Debugging Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-23 Failure Diagnosis Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-24 Other Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

4-1-25 Block Programming Instructions

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

TRACE MEMORY
SAMPLING

TRSM 045 1 34.6 --- Sampling 1 bit and 0 words

148.3 --- Sampling 31 bits and 6 words

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

FAILURE ALARM FAL 006 3 157.1 --- Recording errors

56.0 --- Deleting errors (in order of pri-
ority)

457.0 --- Deleting errors (all errors)

53.6 --- Deleting errors (individually)

SEVERE FAILURE
ALARM

FALS 007 3 --- --- ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Hardware
implementa-

tion

Conditions

SET CARRY STC 040 1 0.15 Yes ---

CLEAR CARRY CLC 041 1 0.15 Yes ---

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Conditions

BLOCK PROGRAM
BEGIN

BPRG 096 2 20.3 --- ---

BLOCK PROGRAM
END

BEND 801 1 17.2 --- ---

Branching IF (execu-
tion condi-
tion)

802 1 6.8 Yes IF true

12.2 IF false

Branching IF (relay
number)

802 2 11.0 Yes IF true

16.5 IF false
512

FQM1 Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the above table.

Branching (NOT) IF NOT
(relay
number)

802 2 11.5 Yes IF true

16.8 IF false

Branching ELSE 803 1 11.4 Yes IF true

13.4 IF false

Branching IEND 804 1 13.5 Yes IF true

7.0 IF false

Instruction Mne-
monic

Code Length
(steps)

(See
note.)

ON execution
time (µs)

Conditions
513

FQM1 Instruction Execution Times and Number of Steps Section 4-1
514

Index

A
addressing

operands, 4
See also index registers

ASCII
converting ASCII to hexadecimal, 285
converting hexadecimal to ASCII, 281
table of characters, 7

B
Basic I/O Units

Basic I/O Unit instructions, 54, 462

BCD data, 8
block programs

block programming instructions, 56, 488
branching, 494
description, 488–491
instruction execution times, 512

C
checksum instructions, 356

communications
description of serial communications, 463
instruction execution times, 511
receiving from RS-232C port, 469
serial communications instructions, 55, 463–476
transmitting from RS-232C port, 464

comparing tables, 415

comparison, 415

comparison instructions
execution times, 503

control bits
Sampling Start Bit, 479
Trace Start Bit, 479

conversion instructions
execution times, 506

converting
See also data, converting

counters, 114
execution times, 501
reversible counter, 125

cycle time
instruction execution times, 499

D
data

converting

radians and degrees, 333, 335

data control instructions
execution times, 509

data formats, 7
data movement instructions

execution times, 503

data shift instructions
execution times, 503

data tracing
See also tracing

debugging
debugging instructions, 55, 477–480
failure diagnosis instructions, 56, 481

debugging instructions
execution times, 512

decrement instructions
execution times, 504

degrees
converting degrees to radians, 333

E
EC Directives, xvii

errors
codes

programming, 481, 484

fatal

clearing, 484

generating, 484

instruction processing errors, 8
non-fatal

clearing, 481

generating, 481

program errors, 9
user-programmed errors, 481, 484

execution times, 499–500

exponents, 348

F–G
failure diagnosis instructions

execution times, 512

fatal operating errors
generating and clearing, 484

flags
CY

clearing, 487

ER Flag, 8
Trace Busy Flag, 479
Trace Completed Flag, 479
Trace Trigger Monitor Flag, 479

floating-point data, 318
comparing, 353
comparison, 353
exponents, 348
floating-point math instructions, 42, 317–353
logarithms, 350
515

Index
square roots, 346

floating-point decimal, 8
floating-point math instructions

execution times, 507

function codes
instructions listed by function codes, 66

H
high-speed counter and pulse output instructions, 405

high-speed counting
reading the PV, 411

I
I/O memory address

See also internal I/O memory address

increment instructions
execution times, 504

input instructions
execution times, 500

instruction execution times, 500

instruction sets
-(410), 236
--(592), 210
*(420), 253
*B(424), 259
*BL(425), 261
*F(456), 330
*L(421), 255
*U(422), 256
*UL(423), 258
+(400), 223
++(590), 207
++B(594), 214
++BL(595), 216
++L(591), 209
+B(404), 230
+BC(406), 233
+BCL(407), 234
+BL(405), 231
+C(402), 226
+CL(403), 228
+F(454), 326
+L(401), 225
/(430), 262
/B(434), 268
/BL(435), 270
/F(457), 331
/L(431), 264
/U(432), 265
/UL(433), 267
ACC(888), 438
ACOS(464), 343
AND, 83

AND LD, 89
AND NOT, 85
ANDL(610), 292
ANDW(034), 290
APR(069), 306
ASC(086), 281
ASIN(463), 341
ATAN(465), 344
AVG(195), 374
-B(414), 245
--B(596), 218
-BC(416), 250
BCD(024), 275
BCDL(059), 276
-BCL(417), 251
BCMP(068), 149
BCNT(067), 313
BIN(023), 272
BINL(058), 273
-BL(415), 247
--BL(597), 220
BSET(071), 171
-C(412), 241
-CL(413), 243
CLC(041), 487
CLI(691), 398
CMP(020), 135
CMPL(060), 137
CNT, 122
CNTR(012), 125
COLL(081), 176
COM(029), 303
COML(614), 305
COS(461), 338
CPS(114), 140
CPSL(115), 142
CTBL(882), 415
DEG(459), 335
DI(693), 399
DIFD(014), 102–104

using in interlocks, 108

using in jumps, 112

DIFU(013), 102–104

using in interlocks, 108

using in jumps, 112

DIST(080), 174
EI(694), 400
ELSE(803), 494
END(001), 106
EXP(467), 348
-F(455), 328
FAL(006), 481
FALS(007), 484
FIXL(451), 323
FLTL(453), 325
HEX(162), 285
516

Index
IEND(804), 494
IF(802), 494
IL(002), 107–110
ILC(003), 107–110
INI(880), 405
IORF(097), 462
JME(005), 110
JMP(004), 110
KEEP(011), 98
-L(411), 237
--L(593), 212
LD, 80
LD NOT, 82
LOG(468), 350
MAX(182), 357
MCMP(019), 145, 158
MCRO(099), 383
MIN(183), 360
MOV(021), 160
MOVB(082), 165
MOVD(083), 167
MOVL(498), 162
MSKR(692), 396
MSKS(690), 394
MVN(022), 161
MVNL(499), 164
NEG(160), 278
NEGL(161), 279
NOP(000), 106
OR, 86
OR LD, 91
OR NOT, 87
ORW(035), 293
ORWL(611), 295
OUT, 96
OUT NOT, 97
PLS2(887), 433
PRV(881), 411
PULS(886), 428
RAD(458), 333
RET(093), 390
RSET, 104
RXD(235), 469
SBN(092), 387
SBS(091), 378
SCL(194), 363
SCL2(486), 367
SCL3(487), 371
SET, 104
SIN(460), 336
Single-precision Floating-point Input Comparison
Instructions (329 to 334), 353
SNXT(009), 445
SPED(885), 422
SQRT(466), 346
STEP(008), 445

STUP(237), 474
TAN(462), 339
TCMP(085), 147
TIM, 115
TIMH(015), 118
TMHH(540), 120
TRSM(045), 477
TXD(236), 464
XCHG(073), 173
XFER(070), 169
XNRL(613), 302
XNRW(037), 300
XORL(612), 298
XORW(036), 297
ZCP(088), 155
ZCPL(116), 158

instructions, 73
Basic I/O Unit instructions, 54
block programming instructions, 56, 488
classified by function, 12
comparison instructions, 23, 129–155
controlling high-speed counters and pulse outputs, 405
conversion instructions, 38, 271
counter instructions, 21, 114
data control instructions, 48, 363–377
data movement instructions, 26, 159
data shift instructions, 29, 178
debugging instructions, 55, 477–480
decrement instructions, 31, 207–222
differentiated instructions, 2
execution times, 500
failure diagnosis instructions, 56, 481
floating-point math instructions, 42, 317–353
high-speed counter instructions, 405
I/O Refresh instruction, 462
increment instructions, 31, 207–222
input comparison instructions, 129–134, 353
instruction execution times, 499
instruction variations, 3
interrupt control instructions, 51, 394
listed alphabetically, 58
listed by function code, 66
logic instructions, 40, 290–306
number of steps, 499
pulse output instructions, 405
sequence control instructions, 20, 106
sequence input instructions, 17, 80
sequence output instructions, 18, 96
serial communications instructions, 55, 463–476
special math instructions, 42, 306–314
step instructions, 54, 444–461
steps per instruction, 500
subroutine instructions, 50, 378–390
symbol math instructions, 32, 222–271
table data processing instructions, 47, 356
timer instructions, 21, 114
517

Index
interlocks, 107–110

interrupt control instructions
execution times, 510

interrupts
clearing, 398
disabling all, 399
enabling all, 400
masking, 394
reading mask status, 396
scheduled

reading interval, 396

J-L
jumps, 110

ladder diagrams
controlling bit status

using DIFU(013) and DIFD(014), 102–104

using KEEP(011), 98–102

using SET and RSET, 104–105

latching relays
using KEEP(011), 98

logarithm, 350

logic instructions
execution times, 506

M-N
mathematics

averaging, 374
exponents, 348
finding the maximum in a range, 357
finding the minimum in a range, 360
floating-point addition, 326
floating-point division, 331
floating-point math instructions, 42, 317–353
floating-point multiplication, 330
floating-point subtraction, 328
logarithm, 350
See also trigonometric functions
special math instructions, 42, 306–314
square root, 346
symbol math instructions, 32, 222–271
trigonometric functions, 306

non-fatal operating errors
generating and clearing, 481

O
operands, 4

inputting data, 4
output instructions

execution times, 501

P
PC memory address

See also internal I/O memory address

precautions
general, xii
safety, xii

program capacity, 2
programming

creating step programs, 444
instruction execution times, 500
preparing data in data areas, 171
program capacity, 2
program errors, 9
use of TR Bits, 94

pulse outputs, 405
controlling, 405, 438

R
radians

converting radians to degrees, 335

range comparison, 155, 158

refreshing
differentiated refreshing instructions, 93
immediate refreshing instructions, 93
with IORF(097), 462

RS-232C port
receiving from RS-232C port, 469
transmitting from RS-232C port, 464

S
safety precautions

See also precautions

searching instructions, 356

self-maintaining bits
using KEEP(011), 100

sequence control instructions
execution times, 501

serial communications
description, 463

serial communications instructions
execution times, 511

signed binary data, 7
Single-precision Floating-point Input Comparison
Instructions, 353

special math instructions
execution times, 507

speed outputs, 422

square root
floating-point data, 346

stack instructions, 356
execution times, 508
518

Index
stack processing
execution times, 508

stacks
stack instructions, 356

step instructions
execution times, 510–511

step programs
creating, 444

subroutine instructions
execution times, 509

subroutines
execution times, 509

symbol math instructions
execution times, 505

T
tasks

block programs within tasks, 489

timers, 114
execution times, 501

tracing
flags and control bits, 479

trigonometric functions
arc cosine, 343
arc sine, 341
arc tangent, 344
converting degrees to radians, 333
converting radians to degrees, 335
cosine, 338
sine, 336
tangent, 339

U
unsigned binary data, 7
519

Index
520

521

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content
01 December 2004 Original production

Cat. No. O011-E1-01

Revision code

522

OMRON CORPORATION
FA Systems Division H.Q.
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)55-977-9181/Fax: (81)55-977-9045

Regional Headquarters

OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
#11-01, UE Square,
Singapore 239920
Tel: (65)6835-3011/Fax: (65)6835-2711

Authorized Distributor:

Cat. No. O011-E1-01 Note: Specifications subject to change without notice Printed in Japan

This manual is printed on 100% recycled paper.

F
Q

M
1-

se
ri

es
 F

le
xi

b
le

 M
o

ti
o

n
 C

o
n

tr
o

lle
r

C
at

. N
o

. O
01

1-
E

1-
01

IN
S

T
R

U
C

T
IO

N
S

 R
E

F
E

R
E

N
C

E
 M

A
N

U
A

L

	FQM1 Series FQM1-CM001 FQM1-MMP21 FQM1-MMA21 Flexible Motion Controller
	About this Manual:
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	3-1 Operating Environment Precautions
	3-2 Application Precautions

	4 Conformance to EC Directives
	4-1 Applicable Directives
	4-2 Concepts
	4-3 Conformance to EC Directives
	4-4 EMC Directive Conformance Conditions
	4-5 Relay Output Noise Reduction Methods

	5 Data Backup

	SECTION 1 Introduction
	1-1 General Instruction Characteristics
	1-1-1 Program Capacity
	1-1-2 Differentiated Instructions
	1-1-3 Instruction Variations
	1-1-4 Instruction Location and Execution Conditions
	1-1-5 Inputting Data in Operands
	1-1-6 Data Formats

	1-2 Instruction Execution Checks
	1-2-1 Errors Occurring at Instruction Execution
	1-2-2 Fatal Errors (Program Errors)

	SECTION 2 Summary of Instructions
	2-1 Instruction Classifications by Function
	2-2 Instruction Functions
	2-2-1 Sequence Input Instructions
	2-2-2 Sequence Output Instructions
	2-2-3 Sequence Control Instructions
	2-2-4 Timer and Counter Instructions
	2-2-5 Comparison Instructions
	2-2-6 Data Movement Instructions
	2-2-7 Data Shift Instructions
	2-2-8 Increment/Decrement Instructions
	2-2-9 Symbol Math Instructions
	2-2-10 Conversion Instructions
	2-2-11 Logic Instructions
	2-2-12 Special Math Instructions
	2-2-13 Floating-point Math Instructions
	2-2-14 Table Data Processing Instructions
	2-2-15 Data Control Instructions
	2-2-16 Subroutine Instructions
	2-2-17 Interrupt Control Instructions
	2-2-18 High-speed Counter and Pulse Output Instructions
	2-2-19 Step Instructions
	2-2-20 I/O Refresh Instructions
	2-2-21 Serial Communications Instructions
	2-2-22 Debugging Instructions
	2-2-23 Failure Diagnosis Instructions
	2-2-24 Other Instructions
	2-2-25 Block Programming Instructions

	2-3 Alphabetical List of Instructions by Mnemonic
	2-4 List of Instructions by Function Code

	SECTION 3 Instructions
	3-1 Notation and Layout of Instruction Descriptions
	3-2 Sequence Input Instructions
	3-2-1 LOAD: LD
	3-2-2 LOAD NOT: LD NOT
	3-2-3 AND: AND
	3-2-4 AND NOT: AND NOT
	3-2-5 OR: OR
	3-2-6 OR NOT: OR NOT
	3-2-7 AND LOAD: AND LD
	3-2-8 OR LOAD: OR LD
	3-2-9 Differentiated Instructions
	3-2-10 Operation Timing for I/O Instructions
	3-2-11 TR Bits

	3-3 Sequence Output Instructions
	3-3-1 OUTPUT: OUT
	3-3-2 OUTPUT NOT: OUT NOT
	3-3-3 KEEP: KEEP(011)
	3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014)
	3-3-5 SET and RESET: SET and RSET

	3-4 Sequence Control Instructions
	3-4-1 END: END(001)
	3-4-2 NO OPERATION: NOP(000)
	3-4-3 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003)
	3-4-4 JUMP and JUMP END: JMP(004) and JME(005)

	3-5 Timer and Counter Instructions
	3-5-1 TIMER: TIM
	3-5-2 HIGH-SPEED TIMER: TIMH(015)
	3-5-3 ONE-MS TIMER: TMHH(540)
	3-5-4 COUNTER: CNT
	3-5-5 REVERSIBLE COUNTER: CNTR(012)

	3-6 Comparison Instructions
	3-6-1 Input Comparison Instructions (300 to 328)
	3-6-2 COMPARE: CMP(020)
	3-6-3 DOUBLE COMPARE: CMPL(060)
	3-6-4 SIGNED BINARY COMPARE: CPS(114)
	3-6-5 DOUBLE SIGNED BINARY COMPARE: CPSL(115)
	3-6-6 MULTIPLE COMPARE: MCMP(019)
	3-6-7 TABLE COMPARE: TCMP(085)
	3-6-8 BLOCK COMPARE: BCMP(068)
	3-6-9 EXPANDED BLOCK COMPARE: BCMP2(502)
	3-6-10 AREA RANGE COMPARE: ZCP(088)
	3-6-11 DOUBLE AREA RANGE COMPARE: ZCPL(116)

	3-7 Data Movement Instructions
	3-7-1 MOVE: MOV(021)
	3-7-2 MOVE NOT: MVN(022)
	3-7-3 DOUBLE MOVE: MOVL(498)
	3-7-4 DOUBLE MOVE NOT: MVNL(499)
	3-7-5 MOVE BIT: MOVB(082)
	3-7-6 MOVE DIGIT: MOVD(083)
	3-7-7 BLOCK TRANSFER: XFER(070)
	3-7-8 BLOCK SET: BSET(071)
	3-7-9 DATA EXCHANGE: XCHG(073)
	3-7-10 SINGLE WORD DISTRIBUTE: DIST(080)
	3-7-11 DATA COLLECT: COLL(081)

	3-8 Data Shift Instructions
	3-8-1 SHIFT REGISTER: SFT(010)
	3-8-2 REVERSIBLE SHIFT REGISTER: SFTR(084)
	3-8-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017)
	3-8-4 WORD SHIFT: WSFT(016)
	3-8-5 ARITHMETIC SHIFT LEFT: ASL(025)
	3-8-6 DOUBLE SHIFT LEFT: ASLL(570)
	3-8-7 ARITHMETIC SHIFT RIGHT: ASR(026)
	3-8-8 DOUBLE SHIFT RIGHT: ASRL(571)
	3-8-9 ROTATE LEFT: ROL(027)
	3-8-10 DOUBLE ROTATE LEFT: ROLL(572)
	3-8-11 ROTATE RIGHT: ROR(028)
	3-8-12 DOUBLE ROTATE RIGHT: RORL(573)
	3-8-13 ROTATE LEFT WITHOUT CARRY: RLNC(574)
	3-8-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576)
	3-8-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575)
	3-8-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577)
	3-8-17 ONE DIGIT SHIFT LEFT: SLD(074)
	3-8-18 ONE DIGIT SHIFT RIGHT: SRD(075)

	3-9 Increment/Decrement Instructions
	3-9-1 INCREMENT BINARY: ++(590)
	3-9-2 DOUBLE INCREMENT BINARY: ++L(591)
	3-9-3 DECREMENT BINARY: – –(592)
	3-9-4 DOUBLE DECREMENT BINARY: – –L(593)
	3-9-5 INCREMENT BCD: ++B(594)
	3-9-6 DOUBLE INCREMENT BCD: ++BL(595)
	3-9-7 DECREMENT BCD: – –B(596)
	3-9-8 DOUBLE DECREMENT BCD: – –BL(597)

	3-10 Symbol Math Instructions
	3-10-1 SIGNED BINARY ADD WITHOUT CARRY: +(400)
	3-10-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)
	3-10-3 SIGNED BINARY ADD WITH CARRY: +C(402)
	3-10-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403)
	3-10-5 BCD ADD WITHOUT CARRY: +B(404)
	3-10-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405)
	3-10-7 BCD ADD WITH CARRY: +BC(406)
	3-10-8 DOUBLE BCD ADD WITH CARRY: +BCL(407)
	3-10-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: –(410)
	3-10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411)
	3-10-11 SIGNED BINARY SUBTRACT WITH CARRY: –C(412)
	3-10-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: –CL(413)
	3-10-13 BCD SUBTRACT WITHOUT CARRY: –B(414)
	3-10-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –BL(415)
	3-10-15 BCD SUBTRACT WITH CARRY: –BC(416)
	3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417)
	3-10-17 SIGNED BINARY MULTIPLY: *(420)
	3-10-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421)
	3-10-19 UNSIGNED BINARY MULTIPLY: *U(422)
	3-10-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423)
	3-10-21 BCD MULTIPLY: *B(424)
	3-10-22 DOUBLE BCD MULTIPLY: *BL(425)
	3-10-23 SIGNED BINARY DIVIDE: /(430)
	3-10-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)
	3-10-25 UNSIGNED BINARY DIVIDE: /U(432)
	3-10-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)
	3-10-27 BCD DIVIDE: /B(434)
	3-10-28 DOUBLE BCD DIVIDE: /BL(435)

	3-11 Conversion Instructions
	3-11-1 BCD-TO-BINARY: BIN(023)
	3-11-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058)
	3-11-3 BINARY-TO-BCD: BCD(024)
	3-11-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(059)
	3-11-5 2’S COMPLEMENT: NEG(160)
	3-11-6 DOUBLE 2’S COMPLEMENT: NEGL(161)
	3-11-7 ASCII CONVERT: ASC(086)
	3-11-8 ASCII TO HEX: HEX(162)

	3-12 Logic Instructions
	3-12-1 LOGICAL AND: ANDW(034)
	3-12-2 DOUBLE LOGICAL AND: ANDL(610)
	3-12-3 LOGICAL OR: ORW(035)
	3-12-4 DOUBLE LOGICAL OR: ORWL(611)
	3-12-5 EXCLUSIVE OR: XORW(036)
	3-12-6 DOUBLE EXCLUSIVE OR: XORL(612)
	3-12-7 EXCLUSIVE NOR: XNRW(037)
	3-12-8 DOUBLE EXCLUSIVE NOR: XNRL(613)
	3-12-9 COMPLEMENT: COM(029)
	3-12-10 DOUBLE COMPLEMENT: COML(614)

	3-13 Special Math Instructions
	3-13-1 ARITHMETIC PROCESS: APR(069)
	3-13-2 BIT COUNTER: BCNT(067)
	3-13-3 VIRTUAL AXIS: AXIS(981)

	3-14 Floating-point Math Instructions
	3-14-1 FLOATING TO 32-BIT: FIXL(451)
	3-14-2 32-BIT TO FLOATING: FLTL(453)
	3-14-3 FLOATING-POINT ADD: +F(454)
	3-14-4 FLOATING-POINT SUBTRACT: –F(455)
	3-14-5 FLOATING-POINT MULTIPLY: *F(456)
	3-14-6 FLOATING-POINT DIVIDE: /F(457)
	3-14-7 DEGREES TO RADIANS: RAD(458)
	3-14-8 RADIANS TO DEGREES: DEG(459)
	3-14-9 SINE: SIN(460)
	3-14-10 COSINE: COS(461)
	3-14-11 TANGENT: TAN(462)
	3-14-12 ARC SINE: ASIN(463)
	3-14-13 ARC COSINE: ACOS(464)
	3-14-14 ARC TANGENT: ATAN(465)
	3-14-15 SQUARE ROOT: SQRT(466)
	3-14-16 EXPONENT: EXP(467)
	3-14-17 LOGARITHM: LOG(468)
	3-14-18 EXPONENTIAL POWER: PWR(840)
	3-14-19 Single-precision Floating-point Comparison Instructions

	3-15 Table Data Processing Instructions
	3-15-1 FIND MAXIMUM: MAX(182)
	3-15-2 FIND MINIMUM: MIN(183)

	3-16 Data Control Instructions
	3-16-1 SCALING: SCL(194)
	3-16-2 SCALING 2: SCL2(486)
	3-16-3 SCALING 3: SCL3(487)
	3-16-4 AVERAGE: AVG(195)

	3-17 Subroutines
	3-17-1 SUBROUTINE CALL: SBS(091)
	3-17-2 MACRO: MCRO(099)
	3-17-3 SUBROUTINE ENTRY: SBN(092)
	3-17-4 SUBROUTINE RETURN: RET(093)
	3-17-5 JUMP SUBROUTINE: JSB(982)

	3-18 Interrupt Control Instructions
	3-18-1 SET INTERRUPT MASK: MSKS(690)
	3-18-2 READ INTERRUPT MASK: MSKR(692)
	3-18-3 CLEAR INTERRUPT: CLI(691)
	3-18-4 DISABLE INTERRUPTS: DI(693)
	3-18-5 ENABLE INTERRUPTS: EI(694)
	3-18-6 INTERVAL TIMER: STIM(980)

	3-19 High-speed Counter/Pulse Output Instructions
	3-19-1 MODE CONTROL: INI(880)
	3-19-2 HIGH-SPEED COUNTER PV READ: PRV(881)
	3-19-3 REGISTER COMPARISON TABLE: CTBL(882)
	3-19-4 SPEED OUTPUT: SPED(885)
	3-19-5 SET PULSES: PULS(886)
	3-19-6 PULSE OUTPUT: PLS2(887)
	3-19-7 ACCELERATION CONTROL: ACC(888)

	3-20 Step Instructions
	3-20-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009)

	3-21 I/O Refresh Instruction
	3-21-1 I/O REFRESH: IORF(097)

	3-22 Serial Communications Instructions
	3-22-1 Serial Communications
	3-22-2 TRANSMIT: TXD(236)
	3-22-3 RECEIVE: RXD(235)
	3-22-4 CHANGE SERIAL PORT SETUP: STUP(237)

	3-23 Debugging Instructions
	3-23-1 Trace Memory Sampling: TRSM(045)

	3-24 Failure Diagnosis Instructions
	3-24-1 FAILURE ALARM: FAL(006)
	3-24-2 SEVERE FAILURE ALARM: FALS(007)

	3-25 Other Instructions
	3-25-1 SET CARRY: STC(040)
	3-25-2 CLEAR CARRY: CLC(041)

	3-26 Block Programming Instructions
	3-26-1 Introduction
	3-26-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801)
	3-26-3 Branching: IF (NOT)(802), ELSE(803), and IEND(804)

	SECTION 4 Instruction Execution Times and Number of Steps
	4-1 FQM1 Instruction Execution Times and Number of Steps
	4-1-1 Sequence Input Instructions
	4-1-2 Sequence Output Instructions
	4-1-3 Sequence Control Instructions
	4-1-4 Timer and Counter Instructions
	4-1-5 Comparison Instructions
	4-1-6 Data Movement Instructions
	4-1-7 Data Shift Instructions
	4-1-8 Increment/Decrement Instructions
	4-1-9 Symbol Math Instructions
	4-1-10 Conversion Instructions
	4-1-11 Logic Instructions
	4-1-12 Special Math Instructions
	4-1-13 Floating-point Math Instructions
	4-1-14 Table Data Processing Instructions
	4-1-15 Data Control Instructions
	4-1-16 Subroutine Instructions
	4-1-17 Interrupt Control Instructions
	4-1-18 High-speed Counter and Pulse Output Instructions (Only for Motion Control Modules)
	4-1-19 Step Instructions
	4-1-20 I/O Refresh Instructions
	4-1-21 Serial Communications Instructions
	4-1-22 Debugging Instructions
	4-1-23 Failure Diagnosis Instructions
	4-1-24 Other Instructions
	4-1-25 Block Programming Instructions

	Index
	Revision History

